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Abstract—In Vehicular Edge Computing (VEC) systems, the computing resources of connected Electric Vehicles (EV) are used to
fulfill the low-latency computation requirements of vehicles. However, local execution of heavy workloads may drain a considerable
amount of energy in EVs. One promising way to improve the energy efficiency is to share and coordinate computing resources among
connected EVs. However, the uncertainties in the future location of vehicles make it hard to decide which vehicles participate in
resource sharing and how long they share their resources so that all participants benefit from resource sharing. In this paper, we
propose VECMAN, a framework for energy-aware resource management in VEC systems composed of two algorithms: (i) a resource
selector algorithm that determines the participating vehicles and the duration of resource sharing period; and (ii) an energy manager
algorithm that manages computing resources of the participating vehicles with the aim of minimizing the computational energy
consumption. We evaluate the proposed algorithms and show that they considerably reduce the vehicles’ computational energy
consumption compared to the state-of-the-art baselines. Specifically, our algorithms achieve between 7% and 18% energy savings
compared to a baseline that executes workload locally and an average of 13% energy savings compared to a baseline that offloads
vehicles’ workloads to RSUs.

Index Terms—Vehicular edge computing, Resource management, Chance constrained optimization.
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1 INTRODUCTION

E LECTRIC Connected Autonomous Vehicles (eCAVs), the
future of our transportation system, have two main

requirements: processing massive amount of data with min-
imum latency and having long driving ranges. To address
the first requirement computational nodes must be placed
closer to the eCAVs at the edge of the cloud [1]. Thus, in
these so called Vehicular Edge Computing (VEC) systems,
computational nodes are placed in Road-Side Units (RSUs)
and exploit the Dedicated Short Range Communication
(DSRC) technology [2] for vehicle-to-vehicle and vehicle-
to-RSU communications. However, the scalability of these
systems may be hindered by the amount of vehicles and
workloads in RSU coverage areas. Indeed, due to the limited
capacity of RSUs, some computational tasks may experience
poor Quality of Service (QoS) or even failure. In order to
improve reliability, computing resources (e.g., Nvidia Drive
Px 2) are installed on each vehicle for local workload execu-
tion and minimized latency. On the other hand, having local
computing resources might affect the eCAV’s driving range.
For example, a preliminary study by Lin et al. [3] shows
that a computing node (including computing, storage, and
cooling hardware) can reduce the driving range of a Chevy
Bolt by up to 11.5%. However, the authors only considered
three executing tasks on various computing configurations
and did not consider the effect of the eCAV speed on the
driving range. To conduct a more general analysis, we
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exploit the driving range vs speed data available for the
Tesla Model S [4], which can be used to easily estimate the
total power consumption of the eCAV at different speeds
given the battery pack size. Figure 1 shows the results for
the addition of a computing system of power consumption
varying from 0W to 3kW. We observe that the impact of
the computing power on the driving range varies from
10% to 40% for a 2kW computing power. This is computed
for the eCAV traveling at average speeds from 60mph to
20mph, respectively. Considering that the rush-hour (i.e., 4-
5pm) speed in 20 US cities is 33mph on average [5], a 2kW
computing system can cause a 25% reduction in driving
range on modern electric vehicles. As a result, because most
eCAVs on the road during weekdays travel at rush hours
and because during this period eCAVs spend a considerable
amount of time near each other due to traffic, it is desired to
design new strategies that allow to reduce the energy con-
sumption of eCAVs computing systems for longer driving
ranges.

In order to achieve high QoS, reliability, and increased
driving range, eCAVs in a VEC system could share their
resources. Rather than relying only on the limited capacity
of RSU nodes, the computing resources of the vehicles can
be coordinated to achieve energy savings. The key-intuition
for achieving energy savings is to 1) exploit the computational
slack caused by discrete power/QoS settings of computing
resources (e.g., CPUs and GPUs), and 2) exploit the non-
linear relationship between these settings and the computa-
tional power consumption [6]. First, CPUs commonly have
a fixed number of selectable configurations for voltage-
frequency levels and number of cores to trade-off power
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Fig. 1. Effect of computing power on eCAV’s driving range.

consumption and QoS. Each configuration leads to a max-
imum number of instructions that can be executed within
a certain time period. If the local workload exceeds that
maximum, the system must select a new configuration that
increases the QoS at the cost of a higher power consumption,
e.g., activate more cores or increase the voltage-frequency
level. However, this selected default configuration may not
be fully utilized by the local workload, i.e., there exist a slack
of computational capacity that can be used to execute extra
workload at the same default configuration. Second, there
exist a non-linear relationship between the computational
power consumption and the frequency settings [6]. Thus,
a taskset executing on an eCAV operating at a high CPU
frequency may consume much more power than the same
taskset partially executing on an eCAV operating at a lower
CPU frequency with similar overall performance. Thus, the
system can achieve energy savings by offloading part of
requester vehicle workload (currently operating at a high
frequency) to provider vehicles (currently operating at a low
frequency) that can exploit the providers’ computational
slack without changing their default configuration, which
limits the provider vehicles power overhead. Then, at a later
time, providers can become requesters to achieve higher
energy savings.

Enabling resource sharing among eCAVs in a VEC sys-
tem requires the dynamic determination of two important
parameters: (a) the set of participating vehicles in resource
sharing, and (b) the time duration of resource sharing.
However, the uncertainties in the future location of vehi-
cles make it hard to decide these parameters so that all
participants benefit from resource sharing. In this paper,
we overcome these challenges by proposing VECMAN, a
framework for energy-aware resource management, which
consists of two algorithms: (i) a resource selector algorithm
that runs periodically on the local RSU and determines
the set of participating vehicles as well as the duration
of resource sharing; and (ii) an energy manager algorithm
that runs periodically at a finer time grain within each
resource sharing time period and determines the state of
each participating vehicle, i.e., requester or provider, the
number of replicas for the requesters’ workloads, and the
amount of requester’s workload to offload so that energy
consumption is minimized for all the participating vehicles.
Main Contributions. This paper is an extended version of
our previous work on energy-aware resource management
in VEC systems [7], where we have assumed to already have
determined the set of participating vehicles and the length
of the sharing period for the energy manager. In addition,
the system has only been tested on a randomly-generated

vehicle motion trace. Different from our previous work and
other related work extensively described in Section 2, in this
paper we provide a comprehensive energy-aware resource
management framework for eCAVs in VEC systems. Specif-
ically, our main contributions are as follows:
• In Section 3 we formulate the new resource selection

problem and generalize the energy manager formu-
lation for a complete integration in the VECMAN
framework. The objective of the resource selector is to
dynamically determine the set of participating vehicles
and the duration of the resource sharing period for
maximized computing resources and reliability. The
VECMAN framework allows partial offloading of ve-
hicles’ workload.

• VECMAN is robust to uncertainties in the future lo-
cation of vehicles. However, the optimization problem
solved by VECMAN is a chance-constrained problem,
and thus, obtaining the optimal solution in a reasonable
amount of time is not freasible. Therefore, in Section 4,
VECMAN is designed based on an iterative algorithm
called I-Selector to solve the resource selection problem,
and a greedy algorithm called G-ERMP to solve the
energy-aware resource management problem.

• In Section 5, we test VECMAN using a real-world
dataset of vehicular mobility collected in the city of
Cologne, Germany [8]. The results show that VEC-
MAN achieves between 7% and 18% energy savings
compared to a baseline that executes workload locally,
and an average of 13% energy savings compared to a
baseline that offloads workloads only to RSUs.

2 RELATED WORK

A highly efficient offloading mechanism for VEC systems
has to overcome several challenges that do not exist or
are less significant in the cloud-based systems. Due to
the dynamic nature of VEC systems that mainly stems
from the mobility of vehicles, an optimal offloading for
the current setting of the network might turn to the least
efficient offloading in few seconds/minutes. Furthermore,
the variability of the available resources over time affects
two important performance metrics, i.e., the reliability of
the network and the QoS.
High QoS. Some of the existing challenges of resource
management in VEC systems have been addressed from
different perspectives and using different approaches. Sev-
eral studies focused on ensuring high QoS. Zheng et al. [9]
addressed the variability of the resources in a system in
which clouds, parked vehicles, and mobile vehicles pro-
vide computational services. In their system, the goal is to
maximize the amount of power saving of vehicles while the
latency and transfer costs are minimized. Yu et al. [1] pro-
posed a hierarchical VM migration mechanism for mobile
vehicles by integrating computing resources in data centers,
RSUs, and vehicles. They presented a layered structure that
allows vehicles to select their services resiliently. Yang et
al. [10] proposed a task offloading scheme for cooperative
edge servers scenario with the aim of minimizing the cost
of offloading while guaranteeing the QoS. However, these
studies considered integrated edge resources when making
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of fl o a di n g d e ci si o n s a n d di d n ot c o n si d e r t h e di st ri b ut e d
a n d m o bil e n at u r e of s e r v e r s.

Hi g h R eli a bilit y. S o m e r e s e a r c h e r s h a v e al s o c o n si d e r e d
s p e c ul ati v e e x e c uti o n a s a t e c h ni q u e t o e n s u r e hi g h Q o S
a n d l o w ri s k of f ail u r e. Z hi y u a n et al. [ 1 1] st u di e d t h e t a s k
r e pli c ati o n p r o bl e m t o mi ni mi z e t h e p r o b a bilit y of d e a dli n e
vi ol ati o n s. Z h u et al. [ 1 2] p r o p o s e d a n o nli n e al g o rit h m f o r
t a s k r e pli c ati o n i n v e hi c ul a r f o g c o m p uti n g wit h t h e ai m of
mi ni mi zi n g t h e m a xi m u m s e r vi c e l at e n c y w hil e mi ni mi zi n g
t h e t ot al q u alit y l o s s of t a s k s. S u n et al. [ 1 3] p r o p o s e d a
l e a r ni n g b a s e d al g o rit h m f o r t a s k r e pli c ati o n i n V E C s y s-
t e m s. T h ei r o bj e cti v e i s t o mi ni mi z e t h e a v e r a g e of fl o a di n g
d el a y of t a s k s. Z h o u et al. [ 1 4] c o n si d e r e d a c o o p e r ati v e
v e hi cl e i nf r a st r u ct u r e s y st e m a n d a d d r e s s e d t h e e x e c uti o n
ti m e mi ni mi z ati o n p r o bl e m. B a h r ei ni et al. [ 1 5] d e v el o p e d
a s p e c ul ati v e e x e c uti o n f r a m e w o r k f o r V E C s y st e m s, w h e r e
t h e n u m b e r of r e pli c a s f o r e a c h r e q u e st s i s p r e d et e r mi n e d
a n d i s gi v e n b y a n e n e r g y m a n a g e r. T h e r e pli c a m a n a g e r
d e ci d e s h o w t o all o c at e c o pi e s of t h e v e hi cl e s’ w o r kl o a d o n
diff e r e nt n o d e s t o e n s u r e hi g h r eli a bilit y a n d l o w l at e n c y.
H o u et al. [ 1 6] d e v el o p e d a c o m p ut ati o n of fl o a di n g m e c h-
a ni s m f o r l at e n c y- s e n siti v e a p pli c ati o n s. T o e n s u r e hi g h
r eli a bilit y, t h e y j oi ntl y o pti mi z e d t a s k all o c ati o n a n d t h e
r e p r o c e s si n g of f ail e d s u bt a s k e x e c uti o n s. H o w e v e r, t h e s e
st u di e s d o n ot b al a n c e t h e n u m b e r of r e pli c a s wit h t h e
e n e r g y c o n s u m pti o n: h a vi n g a hi g h n u m b e r of r e pli c a s m a y
l e a d t o a s m all i m p r o v e m e nt i n r o b u st n e s s t o f ail u r e w hil e
c a u si n g e n e r g y w a st e o n v e hi cl e s.

Q o S v s. E n er g y. S e v e r al s ol uti o n s h a v e b e e n p r o p o s e d
t o t r a d e off b et w e e n l at e n c y a n d e n e r g y c o n s u m pti o n i n
m o bil e e d g e c o m p uti n g s y st e m s [ 1 7], [ 1 8], [ 1 9], [ 2 0], [ 2 1],
[ 2 2], [ 2 3]. T h e s e st u di e s i n v e sti g at e h o w t o a c c o u nt f o r t h e
i nt e rf e r e n c e of m ulti pl e s e r vi c e r e q u e st e r s s h a ri n g s e r vi c e
p r o vi d e r s wit h c o n si d e r ati o n of l at e n c y a n d e n e r g y c o n-
s u m pti o n. I n p a rti c ul a r, Vi s w a n at h a n et al. [ 2 2] c oll e ct e d
st ati sti c s o n a v ail a bilit y of c o n n e cti o n s b et w e e n s e r vi c e r e-
q u e st e r s a n d s e r vi c e p r o vi d e r s t o i m p r o v e t h e Q o S. W o r k-
l o a d i s t h e n mi g r at e d a c r o s s s e r vi c e p r o vi d e r s t o h a n dl e
u n e x p e ct e d s c e n a ri o s ( e. g., l o s s of c o n n e cti vit y o r e m pt y
b att e r y). H o w e v e r, all t h e a b o v e s ol uti o n s h a v e a si n gl e
p oi nt of f ail u r e, i. e., if t h e s el e ct e d s e r vi c e p r o vi d e r f ail s, t h e
w o r kl o a d h a s t o b e mi g r at e d o r of fl o a d e d a g ai n, w hi c h i n-
c r e a s e s t h e l at e n c y. N ot e t h at s o m e of t h e st u di e s m e nti o n e d
a b o v e ( e. g., [ 1], [ 1 2], [ 1 3]) u s e t a s k r e pli c ati o n t o r e d u c e t h e
ri s k of f ail u r e b ut wit h o ut c o n si d e r ati o n of t h e i m p a ct of t h e
n u m b e r of r e pli c a s o n t h e e n e r g y c o n s u m pti o n.

T o t h e b e st of o u r k n o wl e d g e, diff e r e nt f r o m o u r s ol u-
ti o n, n o n e of t h e a b o v e st u di e s c o n si d e r at t h e s a m e ti m e
t h e p r o bl e m s of ( a) d et e r mi ni n g t h e d u r ati o n of r e s o u r c e
s h a ri n g, ( b) c o o r di n ati n g t h e c o m p uti n g r e s o u r c e s a m o n g
m o vi n g v e hi cl e s, a n d ( c) d et e r mi ni n g t h e n u m b e r of r e pli c a s
f o r v e hi c ul a r w o r kl o a d s t o mi ni mi z e t h e e n e r g y c o n s u m p-
ti o n of v e hi cl e s wit h o ut vi ol ati n g t h e d e si r e d Q o S l e v el s.

3 V E C M A N P R O B L E M F O R M U L A TI O N

V E C M A N i s c h a r a ct e ri z e d b y t w o m ai n c o m p o n e nt s, t h e
res o urce sele ct or a n d t h e e ner g y m a n a ger . T h e r e s o u r c e s el e ct o r
t a k e s t h e v e hi cl e s’ i nf o r m ati o n (i. e., l o c ati o n a n d c o m p uti n g
r e s o u r c e s) i nt o c o n si d e r ati o n p e ri o di c all y ( at a c o a r s e ti m e
s c al e) a n d, b a s e d o n t h e hi st o r y of t h e t r af fi c d at a i n t h e
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Fi g. 2. A V E C s y st e m: ( a) A n ar e a wit h s e v er al v e hi cl e s a n d R S U s, ( b)
E a c h R S U r u n s t h e r e s o ur c e s el e ct or a n d t h e e n er g y m a n a g er l o c all y.

c o v e r a g e a r e a a n d t h e m o v e m e nt b e h a vi o r of v e hi cl e s, ( a)
it s el e ct s t h e s et of v e hi cl e s t h at c a n p a rti ci p at e i n r e s o u r c e
s h a ri n g, ( b) it d et e r mi n e s t h e l e n gt h of t h e p e ri o d s o t h at
e a c h s el e ct e d v e hi cl e r e m ai n s i n t h e c o v e r a g e a r e a wit h a
hi g h p r o b a bilit y d u ri n g t h e r e s o u r c e s el e cti o n p e ri o d. We
a s s u m e t h at t h e r e al-ti m e l o c ati o n i nf o r m ati o n of a v e hi cl e i s
o bt ai n e d b y t h e o n- b o a r d gl o b al p o siti o n s y st e m ( G P S). T h e
r e s o u r c e s el e ct o r, b a s e d o n t h e hi st o r y of t r af fi c d at a a n d t h e
c u r r e nt l o c ati o n of a v e hi cl e, d et e r mi n e s t h e p r o b a bilit y t h at
t h e v e hi cl e st a y s i n t h e c o v e r a g e a r e a t o d e ci d e w h et h e r o r
n ot t o e n g a g e t h at v e hi cl e i n t h e r e s o u r c e s h a ri n g. At a fi n e r
ti m e s c al e t h a n t h e r e s o u r c e s el e ct o r, t h e e n e r g y m a n a g e r,
d e ci d e s t h e v e hi cl e s’ st at e (i. e., r e q u e st e r o r p r o vi d e r), t h e
n u m b e r of r e pli c a s f o r e a c h r e q u e st e r’ s w o r kl o a d, a n d t h e
r e pli c a s’ all o c ati o n o n p r o vi d e r v e hi cl e s. T h e r e s o u r c e s el e c-
t o r a n d t h e e n e r g y m a n a g e r r u n at diff e r e nt ti m e s c al e s, a n d
t h u s t h e p r o bl e m s t h e y s ol v e c a n b e t r e at e d a s s e p a r at e.

3. 1 Ill u str ati v e E x a m pl e

Fi g u r e 2 a s h o w s t h e di st ri b ut e d a r c hit e ct u r e of a V E C s y s-
t e m i m pl e m e nti n g V E C M A N. E a c h v e hi cl e i s a s si g n e d t o
t h e n e a r e st R S U. E a c h R S U r u n s t h e r e s o u r c e s el e ct o r a n d
t h e e n e r g y m a n a g e r l o c all y. Fi g u r e 2 b s h o w s t h e c o v e r a g e
a r e a of a n R S U, wit h f o u r a s si g n e d v e hi cl e s. I n t hi s e x a m pl e,
t h e r e s o u r c e s el e ct o r s el e ct s v e hi cl e s A, B, a n d C t o p a rti ci-
p at e i n r e s o u r c e s h a ri n g f o r T u nit s of ti m e. D u e t o t h e hi g h
p r o b a bilit y of l e a vi n g t h e c o v e r a g e a r e a, v e hi cl e D i s n ot
s el e ct e d t o p a rti ci p at e i n r e s o u r c e s h a ri n g. At a fi n e r g r ai n,
t h e e n e r g y m a n a g e r i s e x e c ut e d o n t h e s el e ct e d v e hi cl e s
f o r T / T e m p e ri o d s, w h e r e T e m i s t h e l e n gt h of e a c h e n e r g y
m a n a g e r p e ri o d. I n t h e fi r st p e ri o d, t h e e n e r g y m a n a g e r ( 1)
s el e ct s v e hi cl e A a s a s e r vi c e r e q u e st e r a n d v e hi cl e s B a n d C
a s s e r vi c e p r o vi d e r s. It al s o d et e r mi n e s t w o r e pli c a s f o r t h e
r e q u e st of v e hi cl e A t o b e a s si g n e d o n v e hi cl e s B a n d C. ( 2)
T h e e n e r g y m a n a g e r c o o r di n at e s t h e r e pli c a s d e pl o y m e nt.
( 3) W h e n o n e of t h e p r o vi d e r s r et u r n s t h e c o m p ut ati o n
r e s ult t o A ( e. g., v e hi cl e C), ( 4) t h e ot h e r p r o vi d e r s st o p t h e
c o m p ut ati o n a n d w ait f o r ot h e r w o r kl o a d s. I n t h e f oll o wi n g
e n e r g y m a n a g e r p e ri o d s, v e hi cl e A will h o st t h e w o r kl o a d s
of v e hi cl e s B a n d C t o h el p t h e m l o w e r t h ei r e n e r g y c o n-
s u m pti o n. T h u s, all t h e v e hi cl e s c a n s a v e e n e r g y o v e r t h e
r e s o u r c e s el e ct o r p e ri o d T .

A ut h ori z e d li c e n s e d u s e li mit e d t o: W a y n e St at e U ni v er sit y. D o w nl o a d e d o n J ul y 2 7, 2 0 2 1 at 1 8: 1 2: 5 7 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.  
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In the following, we formulate the resource selection
problem (RSP) and the energy-aware resource management
problem (ERMP) in VEC systems.

3.2 RSP Formulation
The inputs of the resource selector are a fixed set V of
vehicles that are currently located in the coverage area, their
available computing resources, and the historical informa-
tion about locations of vehicles until the current time. Based
on these parameters, the resource selector determines (a) the
length of resource selection period T , and (b) the subset of
vehicles V that with a risk factor less than α stay in the
coverage area for T units of time. In fact, the goal of the
resource selector is to engage as many computing resources
of vehicles as possible but at the same time guarantee
that each vehicle, by participating in sharing computing
resources, can save some energy before the next invocation
of the resource selector algorithm. At that point, a new
period length is determined based on the current vehicle
motion information.

We consider the number of instructions that can be
executed by the CPU in a resource selection period as the
amount of computing resources of a vehicle. Thus, increas-
ing the length of the resource selection period increases the
amount of computing resources of each vehicle. However,
increasing the length of the period may decrease the prob-
ability that the vehicle remains in the RSU coverage area,
which leads to a lower expected value of the total computing
resources. Thus, to maximize the amount of computing
resources, the resource selector should consider a trade off
between the length of the period and the probability that
the vehicles stay in the coverage area during the resource
selector period. Thus, the objective of the resource selector is
to find a subset of vehicles V over all possible subsets of
vehicles Λ so that the total amount of computing resources
for TV units of time is maximized:

max
V∈Λ

∑
i∈V

Mi · TV (1)

where Mi is the Millions Instructions Per Second (MIPS)
for the CPU of vehicle i, and TV is the maximum number of
units of time that vehicles in V stay in the coverage area with
a risk factor less than α. In other words, TV is the maximum
number of units of time that satisfies the following risk
factor constraint for all vehicles in V :

p

{
TV⋂
t=1

(`ti ≤ ρ)

}
≥ 1− α, ∀i ∈ V (2)

where ρ is the coverage range of the RSU and `ti is a
probabilistic parameter indicating the distance of vehicle i
from the RSU at time unit t. The probability distribution
of `ti is obtained based on the possible scenarios for the
location of the vehicle in time unit t. Note that, to increase
the readability, in the rest of the paper, we use T instead of
TV when we refer to the currently selected time duration of
the resource selector.

3.3 ERMP Formulation
The inputs of the energy manager are T , the length of
resource selector period, V , a fixed set of vehicles that with

a risk factor less than α stay in the coverage area, the history
of vehicle locations until the current time, and the workload
characteristics. We assume that the RSU runs the energy
manager for Fe periods within T units of time. The length of
each period is fixed and is denoted by Tem, which can be set
to a value that satisfies the Quality of Service (QoS) for the
workloads execution, i.e., every workload should complete
its execution within Tem units of time. Thus, the energy
manager, at each one of the Fe invocations, decides the
vehicle’s state and the number of replicas for each selected
requester so that, after Fe periods, the vehicles’ energy
consumption is minimized without violating the QoS re-
quirements. In other words, we want to ensure that each
vehicle, by participating in sharing computing resources,
can save some energy before the end of the current resource
selector period. Next, we identify two important constraints,
i.e., limited capacity and risk factor, define the energy
consumption model of the vehicles, and finally, formulate
the ERMP.

Capacity Constraints. We characterize the capacity of ve-
hicle i by Ci = {C1i, . . . , CQi}, where Q is the number of
resource types. We consider three resource types (i.e.,Q = 3)
indexed by h: CPU (h = 1), memory (h = 2), and storage
(h = 3). Each vehicle i has a limited capacity Chi for each
resource type h. In addition, we characterize the workload
of vehicle i by ri = {r1i, . . . , rQi}, where rhi is the amount
of resource of type h needed to complete the execution of
the workload. Thus, r1i is the number of CPU instructions
(in millions), r2i is the amount of memory, and r3i is the
amount of storage needed by the workload of vehicle i. For
each vehicle i selected as a provider, the total amount of
resources requested cannot exceed its available capacity:∑

j∈Si

r′hj ≤ Chi, ∀i ∈ P , ∀h (3)

where r′hj is the amount of resource of type h of vehicle j
partially offloaded to provider i (r′hj ≤ rhj), P is the set
of providers, Si is the set of vehicles that have a replica of
their workload assigned to vehicle i, and Chi is the available
capacity of vehicle i for resource type h during each Tem
units of time.

A challenge to overcome is how to calculate the CPU
capacity C1i in Constraint (3). We define the CPU capacity
based on the Millions of Instructions (Mi) that can be exe-
cuted within an energy manager period minus the number
of CPU instructions required for the local workload:

C1i = Mi · Tem − r1i (4)

For a simple single-core CPU, the value of Mi is approxi-
mated by a function of the CPU frequency as follows:

Mi = ϑi · fi + θi (5)

where ϑi and θi are estimated parameters, and fi is the CPU
frequency of each CPU. In order to ensure a good QoS, the
required time to run the local workload r1i must be shorter
than the energy manager period duration Tem, which can
be set as desired:

r1i

ϑi · fi + θi
≤ Tem (6)
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Given the discrete frequency levels available in every CPU,
each vehicle i, to achieve the required QoS at minimum
energy consumption, must set (as default) the minimum
frequency level fi that satisfies the following constraint:

fi ≥
r1i

ϑi · Tem
− θi
ϑi

(7)

As a result, the total CPU capacity C1i in Equation (3) can
be calculated as follows:

C1i = (ϑi · fi + θi) · Tem − r1i (8)

As a result, the capacity constraints in Equation (3) enable
the energy manager to place extra workload on provider
vehicles without affecting their default CPU frequency.

Risk Factor Constraint. Despite the resource selector efforts
to provide a fixed set of vehicles within each resource selec-
tor period, it may happen that some vehicles change their
location in any of the Fe energy manager periods. Thus, be-
cause the future vehicle locations can only be predicted, we
need to ensure that, with some level of confidence defined
by a risk factor, each requester has a good connection with
at least one provider during each period. To formulate this
constraint, we first need to find the minimum distance be-
tween each requester and providers. In particular, for every
selected requester, we want to have at least one provider
within a reliable distance δ > 0. On the other hand, the
location of vehicles is non-deterministic and thus it may be
affected by estimation errors. As a result, we must make sure
that the probability of having at least one provider within a
reliable distance is greater than a satisfaction factor (1− β).
This constraint can be expressed as follows:

p

{
min

j∈P |i∈Sj

lij ≤ δ
}
≥ 1− β, ∀i ∈ V \ P (9)

where lij is the average distance between vehicle i and
vehicle j in the current period, and P is the set of providers.

Energy Consumption Model. The computing system en-
ergy consumption for vehicle i is mainly characterized by
two components, i.e., the computational and the transmis-
sion energy consumption. The computational energy con-
sumption includes dynamic energy consumption and the
idle energy consumption. The idle energy consumption is
the basic power consumption in Tem units of time. The
dynamic energy consumption is the power consumption
for executing the requests which is proportional to the
execution time of the requests and the third power of
the CPU frequency [24]. According to Equation (6) and
assuming that that all instructions are running at the same
frequency, the execution time of request r′j on provider i is
r′1j

ϑi·fi+θi . Thus, the extra energy consumption by executing

request r′j on provider i is λi · r′1j
ϑi·fi+θi · f

3
i , where λi is

an estimated parameter. Thus, the total extra computational
energy consumption on provider i is:

Eextrai = λi · f3
i ·
∑
j∈Si

r′1j

ϑi · fi + θi
, ∀i ∈ P (10)

On the other hand, if vehicle i is selected as a requester, by
offloading r′i, the default frequency of vehicle i may change

TABLE 1
Notation

Notation Description
T Duration of the resource selection period
Fe Number of energy manager periods
Tem Duration of the energy manager period
V Set of vehicles in the coverage area
V Set of participating vehicles.
α, β Risk factor
r′hi Amount of type h resource requested by vehicle i
lij Average distance between vehicle i and j
Chi Available capacity of resource of type h
Eblnc′

i Energy balance of vehicle i from previous period
Eidle

i Idle energy consumption of vehicle i
in an energy manager period

fi Default CPU frequency of vehicle i
di Size of the request of vehicle i
bij Average bandwidth between vehicle i and vehicle i
ψi Transmission energy to send one unit of data
ωi Transmission energy to receive one unit of data
λi, θi, γi, ϑi Estimated parameters

from fi to f ′i, with fi ≥ f ′i. Thus, the energy saving of the
vehicle is equivalent to:

Esavei = λi · f3
i ·

r1i

ϑj · fi + θi
− λi · f ′

3
i ·

r1i − r′1i
ϑi · f ′i + θi

, (11)

∀i ∈ V \ P

The transmission energy consumption is proportional to the
transmission latency which depends on the ratio between
the request size and the data rate between the requester
and the provider [25]. On the other hand, the data rate is
proportional to the bandwidth between the requester and
the provider. Thus, the transmission energy consumption
is proportional to the ratio of the request size and the
bandwidth between the requester and the provider. Thus,
the transmission energy consumption of vehicle i to receive
a request r′j from vehicle j is calculated as the ratio of the
request size dj and the average bandwidth bij , i.e., ωi · djbij .
The parameter ωi is the energy consumption of vehicle i
to receive one unit of data. Therefore, the total energy
consumption of provider i to receive requests from other
vehicles is:

Ereci =
∑
j∈Si

ωi ·
dj
bij
, ∀i ∈ P (12)

Similarly, the energy consumption of vehicle i to send its
request to other vehicles is:

Esendi =
∑
j|i∈Sj

ψi ·
di
bij
, ∀i ∈ V \ P (13)

where ψi is the energy consumption of vehicle i to send one
unit of data to the network.

In order to keep track of the total energy saved and
the extra energy spent by each vehicle when selected as
requesters or providers, respectively, we define the energy
balance. In each energy manager period, the energy bal-
ance of vehicle i, Eblnci , is calculated based on the energy
balance Eblnc

′

i obtained from the previous periods, the
transmission energy, and the energy savings/extra energy
consumption in the current period. In practice, a negative
energy balance means energy savings compared to the case of
always executing the workload locally. Given the above models,
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Algorithm 1 VECMAN Framework
Input: ID of the RSU executing VECMAN: RSU ID

1: while true do
2: Update set of vehicles allocated to RSU ID

and their history: V , H
3: Calculate the probability vector p based on V and H
4: V, T ←I-Selector(V, p)
5: for each k ∈ [1, T

Tem
] do

6: Update current locations of vehicles V and
generate scenarios ξ based on H and T

7: S, P ←G-ERMP(V, ξ)
8: Communicate S and P to vehicles

the energy balance of a provider in the current energy
manager period is calculated as follows:

Eblnci = Eblnc
′

i +
∑
j∈Si

ωi ·
dj
bij

+ λi · f3
i ·
∑
j∈Si

r′1j

ϑi · fi + θi
, ∀j ∈ P

(14)

Similarly, the energy balance of a requester in the current
energy manager period is calculated as follows:

Eblnci = Eblnc
′

i +
∑
j|i∈Sj

ψi ·
di
bij
−
(
λi · f3

i ·
r1i

ϑi · fi + θi

(15)

−λi · f ′
3
i ·

r1i − r′1i
ϑi · f ′i + θi

)
, ∀i ∈ V \ P

Formulation. The objective of the energy manager is to find
a set of providers P over all possible set of providers Π and
the set of replicas Si assigned to each provider i ∈ P over all
possible replica assignments Γi so that the maximum energy
balance over all vehicles is minimized:

min
P∈Π,Si∈Γi|i∈P

max
j∈V

{
Eblncj

}
(16)

where Eblncj is obtained based on Equation (14) and Equa-
tion (15), subject to the capacity and risk factor constraints
in Equations (3) and (9), respectively. Table 1 summarizes
the notation that we use in the paper.

4 VECMAN ALGORITHMS

Because of Constraints (2) and Constraints (9) RSP and
ERMP are both chance-constrained optimization problems.
As a result, they are robust to location uncertainties of the
vehicles. However, solving chance-constrained optimization
problems optimally usually requires computationally ex-
pensive algorithms due to the large number of scenarios on
the movement of the vehicles. To tackle this complexity, we
only consider a sample of scenarios, where each scenario
represents a potential sequence of vehicles location over
consecutive energy manager periods. Then, we develop an
iterative algorithm called I-Selector to find a solution for
RSP and a greedy algorithm called G-ERMP to find a
solution for ERMP in polynomial time.

An algorithmic description of the proposed VECMAN
framework is given in Algorithm 1. The VECMAN frame-
work running on each RSU (each one uniquely identified by
an RSU ID) starts each vehicle management loop (Lines

Algorithm 2 I-Selector
Input: Set of vehicles: V

Vector of probabilities of leaving the coverage area: p
1: T ← Tem

2: R← 0
3: V ← ∅
4: stop← false
5: while not stop do
6: Vnew ←find-satisfied-set(V, pT )
7: Rnew =

∑
i∈Vnew

Mi · T
8: if Rnew ≥ R then
9: R← Rnew

10: V ← Vnew

11: T ← T + Tem

12: else
13: stop← true
14: T ← T − Tem

Output: V, T

2-8) by updating the set of vehicles V currently within the
RSU coverage area and by getting their location history H
(Line 2). The RSU coverage area is divided into multiple
cells. VECMAN calculates the vector p that gives, for each
vehicle, the probability of leaving the RSU coverage area
from each one of these cells for various candidate lengths
of resource selection periods (Line 3). We refer the reader
to Section 5.1 for more details on how p is obtained from a
real dataset. Based on V and p, the I-Selector determines
the length of the next resource selection period T and,
at the same time, the subset of vehicles V that with a
high probability remain in the RSU coverage area over that
period (Line 4). Then, VECMAN starts executing the energy
manager (Lines 5-8).

At the beginning of each one of the Fe energy manager
periods, with Fe = T/Tem, the G-ERMP algorithm updates
the current locations of the participating vehicles and gener-
ates a set of possible scenarios to predict where each vehicle
may be by the end of the current energy manager period
(Line 6). We refer the reader to Section 5.1 for more details
on how the scenarios are obtained using a real dataset.
Based on these scenarios, the G-ERMP algorithm executes to
decide the vehicles’ state, the number of workload replicas,
and their allocations to the selected providers, for mini-
mized energy consumption while ensuring a low risk of fail-
ure and good QoS (Line 7). Then, the computed allocations
for the current energy manager period are communicated
to the vehicles (Line 8). These steps (Lines 6-8) are repeated
every Tem units of time for Fe times, after which VECMAN
starts a new vehicle management loop (Lines 2-8).

4.1 The I-Selector Algorithm

The I-Selector algorithm is given in Algorithm 2. The inputs
of the algorithm are the set of vehicles V with their initial
location in the coverage area, and the vector p calculated
as described in the previous section. The output of the
algorithm consists of the set of participating vehicles V and
the length of the resource selection period T .

I-Selector starts with a small value of T corresponding
to the minimum energy manager period Tem (Line 1). It
increases this value iteratively until it obtains a length of
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period that maximizes the amount of available comput-
ing resources (Lines 5-14). Since the objective function of
RSP (i.e., Equation 1) is a bitonic function of T (the total
available capacity first increases by the increase of T , and
then decreases) we can guarantee that I-Selector finds the
optimal length for resource selection period for the given
sample of scenarios. In each iteration, for the current value
of time period T , I-Selector calls find-satisfied-set procedure
to obtain the set of vehicles Vnew that with a risk factor
less than α stay in the coverage area for T units of time
(Line 6). The input of find-satisfied-set procedure is the
set of vehicles V with their initial locations and the vector
pT = {pTa } that gives the probability of leaving the coverage
area from each cell a within T units of time. As the output,
the procedure returns the set of vehicles Vnew, where for
each vehicle in Vnew with an initial location a, the probabil-
ity of leaving the coverage area is less than α (i.e., pTa < α ).
Then, I-Selector computes Rnew, the computing resources
of vehicles in V (Line 7). If there is no improvement in
the amount of available resources, the algorithm stops;
otherwise, it increases the value of T and continues this
procedure as long as the amount of available resources for
the new time period T is higher than that for the previous
time period.
Complexity Analysis. The time complexity of I-Selector is
O(V · Fe · |ξT |). The main part of I-Selector consists of the
loop in Lines 5-14, which executes T

Tem
= Fe times. In each

iteration, we call satisfied-set which takes O(|ξT | · V ) time.
Therefore, the total time complexity of I-Selector is O(V ·
Fe · |ξT |).

4.2 The Energy Manager Algorithm (G-ERMP)
G-ERMP operates in two phases using various scenarios to
handle the chance constraint. Each scenario assumes a deter-
ministic (i.e., known) location for vehicles. In the first phase,
the algorithm picks a random sample of scenarios generated
based on a set of probable locations for the vehicles. There-
fore, the algorithm solves the deterministic version of ERMP
to obtain a solution for each scenario. Because the location
within a scenario is known, this solution provides a single
replica for each requester vehicle. Then, in the second phase,
based on the assignments obtained for each scenario, the al-
gorithm determines the number of replicas for each vehicle
as well as their replica assignment so that Constraint (9) is
satisfied with a probability higher than (1 − β). However,
the problem solved in the first phase of G-ERMP belongs
to the class of packing problems, which are known to be
NP-hard. Therefore, it is not solvable in polynomial time,
unless P=NP. Thus, we first develop a greedy algorithm
called GD-ERMP, that solves the problem associated with
the first phase of G-ERMP for a selected scenario. Then, we
describe the complete G-ERMP algorithm, which examines
the solutions provided by GD-ERMP to finalize the selection
of the providers and the number of replicas.

4.2.1 The GD-ERMP Algorithm
In order to minimize the maximum energy balance of vehi-
cles, GD-ERMP analyzes the energy balance of each vehicle
at the beginning of each period: vehicles with a low energy
balance are more likely to be selected as the providers for the

Algorithm 3 GD-ERMP

Input: Set of vehicles: V = {(Ci, ri, E
blnc′
i )}

Scenario for the location of vehicles: ε
1: i← argminj∈V E

blnc′
j

2: P ← {i}
3: stop← false
4: while not stop do
5: stop← true
6: Si ← ∅ ∀i ∈ P
7: for j ∈ V − P do
8: i← find-provider(j, P, ε)
9: if i > 0 then

10: Si ← Si ∪ {j}
11: else
12: i← argmaxj∈V−P ( l(j,P,ε)

l̄
− Eblnc′

j

Ē
)

13: P ← P ∪ {i}
14: stop← false
15: break
Output: S, P

current period. However, if the decision is made only based
on the energy balance, we might obtain a solution in which
providers are distributed very irregularly. Thus, the decision
maker needs to consider a high number of providers in the
system so that all the selected requesters are covered within
a reliable distance. In other words, making decisions only
based on the energy balance may increase the number of
providers. Thus, the leftover CPU capacity may not be used
efficiently. To solve this problem, our algorithm considers
both the location of the vehicles and their energy balance.

The algorithm defines a set of providers P , which is
updated in an iterative manner. The algorithm starts with
a minimum possible number of providers, i.e., |P | = 1.
This value increases in the next iteration if the current
providers are not able to provide a good connectivity for
all the requesters or they do not have enough resources to
process the workloads. GD-ERMP stops when all requesters
are allocated within a reliable distance.

Algorithm 3 shows the pseudo-code of GD-ERMP. It
considers both the energy balance and the location of ve-
hicles to decide the set of providers P and the assignment
of the replicas. The inputs are the vector of vehicles with
their request type ri, capacity Ci, and their current energy
balance Eblnc

′

i , and a scenario ε for the location of vehicles
in the current energy manager period. The outputs are the
set of providers P and the set of replicas {Si} allocated to
each provider i.

In order to determine the providers, GD-ERMP first
picks a vehicle with the minimum energy balance, and
puts it in the set of providers P (Lines 1-2). Then, in an
iterative manner, other providers are added to P . For each
vehicle j that is not selected as a provider, the algorithm
calls find-provider to find the nearest provider i that (i) has
enough capacity to serve the vehicle; (ii) is within a reliable
distance, i.e., lij ≤ δ; (iii) works at a lower frequency; and
(iv) by offloading a part of workload of vehicle j to it the
system achieves energy savings (Line 8). To determine the
amount of offloading for vehicle j, find-provider considers
the maximum possible amount of workload r′j that can be
processed on the remaining capacity of provider i. Then,
based on Equations (10-13), it obtains the amount of energy
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saving for the system by this offloading. The positive en-
ergy saving means that provider i can serve the request of
vehicle j; otherwise, the algorithm considers the possibility
of offloading to other providers. If this procedure does not
find such a provider, it returns a negative value; otherwise it
returns the index of the provider. Thus, if find-provider finds
such a provider, the requester is assigned to that provider
and the replica set of that provider is updated (Lines 9-
10). If the algorithm cannot allocate a request within a
reliable distance, the current set of providers is not enough
to satisfy all the requests. Hence, the algorithm needs to add
another vehicle to the set of providers. The next provider is
chosen so that it has a relatively low energy balance and
it is far away from the already selected providers, which
helps covering more requesters with a minimum number
of providers. This strategy is implemented in Lines 12-13,
where the algorithm picks a vehicle that has the maximum

value of
(
l(j,P,ε)

l̄
− Eblnc′

j

Ē

)
, where l(j, P, ε) is the minimum

distance of vehicle j from the set of selected providers under
the scenario ε. l̄ and Ē are the average distance over vehicles
and the average energy balance over vehicles, respectively.
The above procedure is repeated until all requests are allo-
cated to providers that are within a reliable distance.
Complexity Analysis. The time complexity of GD-ERMP is
O(|V|3). The main part of GD-ERMP consists of the loop
in Lines 4-14, which executes |P | times. In each iteration,
for each non-provider vehicle, finding the nearest provider
among j providers will take O(j) time. Therefore, the total
time complexity of GD-ERMP is

∑|P |
j=1(|V|−j) ·j = O(|V|3)

4.2.2 The G-ERMP Algorithm
Algorithm 4 shows the pseudo-code of G-ERMP. The al-
gorithm has as input the set of scenarios, ξ, the vector of
vehicles with their request size, ri, and their capacity, Ci.
The output consists of the set of providers P and the set
of replica’s assignments S for the current energy manager
period. The main idea of G-ERMP is to create a graph based
on the replica allocations obtained for each scenario by the
GD-ERMP algorithm. Each vertex of this graph represents
a vehicle; each edge of the graph indicates a requester j to
provider i assignment, weighted by the number of scenarios
in which a request of j has been allocated to i by the GD-
ERMP algorithm. Then, the algorithm partitions this graph
into the set of providers and the set of requesters, and
determines the number of replicas for each requester. This
partitioning is done so that, for each vehicle, Constraint (9)
is satisfied for more than (1− β) · |ξ| scenarios.

G-ERMP starts with an empty set of providers P and
empty set of replicas’ assignments (Lines 1-2). In each iter-
ation of the algorithm, these sets will be updated. Also, we
define vector σ = {σi} to store the number of scenarios in
which Constraints (9) are satisfied for each vehicle i (Line 3).
We define Γ as a set of vehicles for which Constraints (9)
are satisfied. G-ERMP initializes Γ with the empty set
(Line 4). Sets P̃ and S̃ = {S̃i} are used to save the set of
providers and the set of replicas obtained for each scenario
by GD-ERMP (Lines 5-6). G-ERMP creates a graph with |V|
vertices. Each vertex represents a vehicle and each edge
indicates a request-provider assignment. The weight of an
edge from vertex j to vertex i is denoted by wji and is

Algorithm 4 G-ERMP
Input: Set of vehicles: V = {(Ci, ri)}

Set of scenarios :ξ
1: P ← ∅
2: Si ← ∅ ∀i ∈ V
3: σi ← 0 ∀i ∈ V
4: Γ← ∅
5: for each ε ∈ ξ do
6: (S̃, P̃ )←GD-ERMP(V ,ε)
7: for each i ∈ P̃ do
8: for each j ∈ S̃i do
9: wji ← wji + 1

10: indegi ← indegj + 1

11: while |Γ| < V do
12: j ← argmaxi∈V\P indegi
13: P ← P ∪ {j}
14: Γ← Γ ∪ {j}
15: for each i ∈ P do
16: if j ∈ Si then
17: Si ← Si − {j}
18: for each k ∈ V \ Γ do
19: if wki > 0 and available(k,i,S) then
20: Si ← Si ∪ {k}
21: σk ← σk + wki

22: if σk > (1− β) · |ξ| then
23: Γ← Γ ∪ {k}
24: for each g ∈ V \ Γ do
25: if wgj > 0 and available(g,j,S) then
26: Sj ← Sj ∪ {g}
27: σg ← σg + wgj

28: if σg > (1− β) · |ξ| then
29: Γ← Γ ∪ {g}
Output: S, P

defined as the number of scenarios in which vehicle j is
assigned to vehicle i. The indegree of vertex i, i.e., the total
weight of edges adjacent to vertex i, is stored in vector
indeg = {indegi} (Lines 7-10).

In order to find the minimum number of providers, in
each iteration, G-ERMP selects the vehicle as the provider
that has received the maximum number of requests from
the various scenarios. Therefore, it choses the vertex with
the maximum indegree as a provider (Line 12). Then, it
updates the set of providers (Line 13). When a vehicle is
selected as a provider, it runs its requests locally, which
means that, for this vehicle, Constraint (9) is automatically
satisfied. Thus, it adds the current provider to the set Γ
(Line 14). The algorithm then updates the replica assign-
ment of vehicles in two steps. In the first step, since vehicle j
is selected as a provider, the algorithm removes all the
previous assignments from vehicle j on any provider. In
fact, the algorithm checks if a request from vehicle j has
been assigned to a provider i, it removes that assignment
(Lines 16-17). Furthermore, since the remaining capacity of
vehicle i is increased, it might be able to serve more requests.
Thus, for each vehicle k ∈ V − Γ willing to be assigned to
vehicle i, the algorithm updates the assignment if vehicle i
has enough capacity. It also updates σ for vehicle k. If σk
is greater than (1 − β) · |ξ|, the algorithm adds vehicle k
to Γ. Therefore, the algorithm will not generate any further
replica for that vehicle (Lines 18-23). In the second step, the
algorithm assigns requests from each vehicle g willing to be
assigned to vehicle j. It updates the assignment if vehicle i
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Fig. 3. Example: A problem instance with six vehicles and three scenarios.
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Fig. 4. Example: Replica placement obtained by G-ERMP

has enough capacity. It also updates σ for vehicle g. If σg is
greater than (1 − β) · |ξ|, the algorithm adds vehicle g to Γ
(Lines 24-29). The algorithm continues this procedure until
all the vehicles are added to set Γ.
Complexity Analysis. To investigate the time complexity
of G-ERMP, we analyze the time complexity of the two
main parts of the algorithm. In the first part, G-ERMP calls
GD-ERMP for each scenario. Therefore, as analyzed in the
previous section, the time complexity of the first part is
O(|ξ| · |V|3). In the second part, G-ERMP builds a graph
based on the solution obtained in the first part. The time
complexity of the second part mainly depends on the loop
in Lines 11-29, which executes O(|V|) times. The main part
of the loop consists of the loop in Lines 15-23 which executes
O(|P | ·(|V \Γ|)) times. Therefore, the time complexity of the
second part is O(|V|3). As a result, the total time complexity
of G-ERMP is O(|ξ| · |V|3 + |V|3) = O(|ξ| · |V|3)

4.3 G-ERMP Execution: Example
Here, we provide an example to show how the G-ERMP
algorithm works. We consider an area with six vehicles.
We assume that there are three scenarios for the predicted
locations of the vehicles. In this example, we set β = 0.
Therefore, a feasible solution is obtained when for each
vehicle Constrain (9) is satisfied for all scenarios. In Figure 3,
we show the three solutions obtained by GD-ERMP for each
scenario. In the first scenario (Figure 3a), the request from
vehicles B, C, and D are assigned to A and the request
from E is assigned to F. In the second scenario (Figure 3b),
requests from B, E, and F are assigned to D and the request
from A is assigned to C. In the third scenario (Figure 3c),
requests from B, F, and E are assigned to A and request
from C is assigned to D. Now, we show how G-ERMP

determines the set of requesters, the set of providers, and
the replica assignment based on these solutions. Figure 4a
shows the graph obtained by the solutions for each scenario.
The weight on an edge from i to j indicates the number of
scenarios that recommend an assignment from vehicle i to j.
For example, the weight on edge (B,A) is two because in
two scenarios (Figures 3a and 3c), the request from vehicleA
is assigned to B.

Figure 4b shows the first iteration of the algorithm. In
this iteration, vehicle A, is selected as a provider because
it has the maximum indegree. Replicas from B, D, and C
are respectively assigned to A. The dotted arrows in the
figures are used to highlight the edges that are not used
anymore to compute the nodes’ indegree. Note that due to
the limited capacity, replicas from F are not assigned to A.
Figure 4c shows the next iteration of the algorithm. In this
iteration, vehicle D, which has the second-highest indegree,
is selected as a provider. Thus, a replica from B and C
is allocated to D. Again, due to the the limited capacity,
vehicle F is not assigned to D. However, since D is a
provider now, its previous assignment on A is removed and
the capacity of A is updated. Now, there is enough capacity
for A to serve replicas from F . Therefore, its corresponding
edges are marked with dotted arrows. In the last iteration
(Figure 4d), the last unsatissfied request from E is served
by F , which is marked as provider since its indegree is
higher than that of E.

5 EXPERIMENTAL ANALYSIS

In this section, we describe our experimental setup and then
analyze the experimental results.
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(a) (b) (c)

Fig. 5. Scenario generation model: (a) Distribution of vehicles over a region of Cologne city, (b) Distribution of vehicles over the most congested
area (2 km by 2 km), (c) An example of vehicles’ mobility model.

5.1 Experimental Setup

Computing Setup. Table 2 shows the parameters used to
generate instances in our analysis. U [x, y] indicates the
uniform distribution within the interval [x, y], and N(x, y)
indicates the normal distribution with mean x and vari-
ance y. We have tested VECMAN for various values of Tem
but observed little variation on its general behavior. Thus,
due to limited space, in the rest of the section we show
the result only for Tem = 10 seconds. We assume that for
each type of resources, the capacity of vehicles is in the
same range and does not vary significantly. Therefore, we
use the normal distribution for the memory and storage
capacity of vehicles. According to Equation (8), the CPU
capacity of a vehicle depends on its frequency and the size
of the local workload. We use as an example CPU ARM
Cortex A57 that has 13 frequency levels from 700 MHz to
1, 900 MHz. We profile the Cortex A57 in terms of MIPS
and power consumption for each frequency level to get
the model parameters in Equations (8) and (10). We define
three types of instances with light, moderate, and heavy
workloads. For light workloads, the default frequency varies
from 700 to 1000, while for moderate and heavy cases, it
varies from 1100 to 1400 and 1500 to 1900, respectively.
For all instances the required time to execute workloads
is uniformly drawn from [1, 10000] milliseconds. Thus, by
using Equation (6), the number of CPU instructions for each
instance is r1i = (ϑi ·fi+θi)· U [1,10000]

1000 and the CPU capacity
is C1i = (ϑi · fi + θi) · Tem − (ϑi · fi + θi) · U [1,10000]

1000 .
According to this equation and since the execution time of
all types of workloads is in the same range, the expected
CPU capacity of vehicles with heavy workloads is higher
than that of lighter workloads.

We estimate the transmission energy parameters ωi
and φi based on the analysis provided in [26]. We also set
the value of µ to 27Mb/s (equivalent to 3.375MB/s) which
is the maximum data transmission in DSRC networks [27].
Since the length of energy manager period is 10 seconds,
the maximum size of data that can be transmitted within an
energy manager period in a unit of distance is 33.75MB.
Considering the computational time needed to execute
workload on vehicles within each Tem, to guarantee QoS,
we define three problem instances with light, moderate, and
heavy amount of data. In these instances the size of data

TABLE 2
Distribution of parameters

Parameter Distribution/Value Parameter Value

fi

light: U [700, 1000] r2i U [100, 1000]
moderate: U [1100, 1400] r3i U [100, 1000]

heavy: U [1500, 1900] µ 3375
α, β 0.1 λi 0.00125
ωi 0.2 φi 0.2

di
light: U [500, 1000] θi −4558.52

moderate: U [1000, 5000] ϑi 7.683
heavy: U [5000, 9000] γi −0.741625

C2i N [5000, 500] Tem 10
C3i N [5000, 500]

varies from 0.5MB to 9MB.

RSU Coverage Area Setup. We use the dataset of vehicular
mobility in the city of Cologne, Germany [8]. The dataset
contains the traces of vehicles over a region of 400 square
kilometers during the 24 hours of a working day with
a granularity of one second. Due to the large amount of
data in the dataset, we generate vehicle mobility scenarios
using only data during the rush hour (i.e., 7:30am-8:30am)
to stress-test VECMAN when the maximum number of
vehicles are in traffic.

We assume that the coverage range of the RSU is 1
kilometer, which is similar to the radius of the DSRC [2].
Thus, we consider a 2 kilometers by 2 kilometers area of
Cologne that has the heaviest traffic during the selected rush
hour and assume the RSU is at the center of this area. For
simplicity, we consider the area as a two-dimensional grid
of 20 × 20 cells in which the size of each cell is 100 meters
by 100 meters. Figure 5a shows the traffic over the city of
Cologne during rush hour and Figure 5b shows the traffic of
the most congested area selected for our tests. We observe
that on average, in every second, there are 720 vehicles in the
RSU coverage area. Thus, we set the number of vehicles V
that are initially in the coverage area to 720. For each cell
of the RSU coverage area, we obtain the average number
of vehicles that are located in that cell. We use this number
as a probabilistic parameter to initialize the distribution of
vehicles across the coverage area.

I-Selector Probability Vector. According to the I-Selector
Algorithm, we need to consider various lengths of resource
selection periods to determine the length that maximizes
the objective function (i.e., Equation 1). For each candidate
length T , for each cell in the RSU coverage area, and given
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Fig. 6. Performance for various lengths of the resource selection period (a) Percentage of vehicles with a negative energy balance, (b) Coefficient
of Variation (CV) of energy balance.

the vehicles initial locations when the I-Selector is invoked,
we obtain the probability for each vehicle to leave the RSU
coverage area before T seconds. For this purpose, we con-
sider the vehicles’ location records for each T seconds time
intervals in the dataset. Based on these records, we obtain
the total number of vehicles that are initially located in each
cell, but they leave the coverage area by time slot T . For
each cell, we then divide this number to the total number
of vehicles that are initially located in the cell, which is the
probability for each vehicle in each cell of leaving the RSU
coverage area by the end of T .

Scenario Generation for G-ERMP. We generate scenarios
for the future locations of vehicles based on the current
location of vehicles and the movement probabilities of ve-
hicles between the cells of the grid area. To determine the
probability that a vehicle moves from one cell A to cell B
in each energy manager period, we consider the number of
movements from cell A to cell B divided by the total number
of departures from cell A. Figure 5c shows the movement
probability from the cell marked with X to other cells as a
heat map. The red square shows the RSU coverage area. In
this example there is a low probability a vehicle will leave
the RSU coverage area. These probabilities are then used to
generate the various possible scenarios.

Performance Metrics. The performance of VECMAN is
evaluated by computing the percentage of total energy
savings, which is defined as the ratio between the total
energy savings of vehicles and the total baseline energy
consumption (i.e., vehicles run their requests locally).

ES(%) = 100 ·
∑
i∈V\P (ϑi · fi + θi) · ni∑
i∈V(ϑi · fi + θi) · ni

(17)

To evaluate the fairness of VECMAN, we determine the
Coefficient of Variation (CV ) over energy balance of the
vehicles. A lower value of CV means a more fair distribu-
tion of requests. CV is defined as the ratio of the standard
deviation of Eblnci over the average energy balance across
vehicles Ē,

CV =

√
1
V
∑V
i=1(Eblnci − Ē)2

Ē
(18)

G-ERMP and I-Selector are implemented in C++ and
executed on an Intel 1.6GHz Core i5 with 8 GB RAM.

5.2 Experimental Results

In this section, we first investigate the impact of the length
of resource selection period on the fairness and the energy
balance of vehicles. We show that the length obtained by
I-Selector algorithm yields a fair distribution of workloads
and a low energy balance among the vehicles compared to
other possible lengths of resource selection period. Then, we
investigate the performance of the VECMAN compared to
the baseline that executes workload of each vehicle locally
for the light, moderate, and heavy workload instances. Next,
we investigate the performance of VECMAN compared to
the baseline for instances with light, moderate, and heavy
data transmission sizes. Finally, we investigate the scalabil-
ity of VECMAN compared to a baseline that only offloads
vehicles’ workload to the local RSU while changing the
number of vehicles .

5.2.1 Impact of the Resource Selector

We run the I-Selector algorithm on the set of vehicles that
are initially located in the coverage area. To investigate
the efficiency of the resource selection, we compare the
fairness and energy balance of the participating vehicles
obtained for various lengths of resource selection period.
We vary the value of T from 20 seconds to 160 seconds. For
each length T , we obtain the participating vehicles who for
the next T units of time stay in the area with probability
not less than 1 − α and periodically execute our G-ERMP
algorithm using the selected Tem = 10 seconds. For fairness
of comparison, we run all the experiments over a fixed time
interval (200 seconds) and then, for each baseline, average
the results across resource-selection intervals.

Figures 6a and 6b show the average percentage of ve-
hicles with negative energy balance and average coefficient
of variation at the end of each resource selection period,
respectively. As the figures show, the optimal resource se-
lection period that ensures both fairness and high energy
savings for most participating vehicles is T = 110 seconds,
which is also the period selected by the I-Selector algorithm
of VECMAN. The corresponding number of vehicles se-
lected for participation is 374. A higher energy unbalance
across participating vehicles is observed for T < 110 and
T > 110, specially for heavy workload type. Specifically,
when T < 110 the energy manager runs fewer times during
each resource selection period, therefore giving no time to
some participating vehicles to become both requester and
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Fig. 7. Performance with respect to the workload types: (a) Execution time of G-ERMP, (b) Percentage of vehicles with negative balance, (c)
Percentage of vehicles selected as providers, (d) Coefficient of Variation (CV) of energy balance, and (e) % of energy savings.

provider before the period expiration. As a result, during
each resource selection interval some vehicles may have
been only in requester mode, thus enjoying energy savings,
while some others may have been only in provider mode,
which leads to no energy savings, i.e., unfairness. On the
other hand, when T > 110 the number of vehicles that
are likely to remain in the RSU coverage area and are
therefore selected for participation decreases, which leads
to a lower amount of shared resources during each resource
selection period. This low resource availability leads to a
higher imbalance in energy savings across vehicles because
a fewer number of workloads can be placed on the lower
number of available providers.

These experiments show that the I-Selector algorithm
helps G-ERMP provide fair energy savings among the par-
ticipating vehicles.

5.2.2 Performance vs. Workload Types
As we discussed in previous section, the resource selector
chooses 374 vehicles to participate in resource sharing with
optimal period T = 110 seconds. Here we analyze the
performance of VECMAN by considering these vehicles
and run the G-ERMP in 11 energy-manager periods. We
consider three sets of workload instances: light, moderate,
and heavy. In these instances, the size of transmission data
of vehicles is moderate. Figure 7a shows that the average
execution time of G-ERMP for each problem instance is
less than 0.2 second, which is negligible compared to the
execution period of the requests (Tem = 10 seconds). The
execution times for the three types of workloads are almost
the same. For some of the periods, the execution time of
G-ERMP for problem instances with moderate workload is
slightly higher than that for problem instances with heavy
workload. The reason is that for some periods, in the case of

moderate workload instances, the percentage of providers
that do not execute only their local workload is slightly
higher than in the case of high workload instances. Thus,
the graph generated by G-ERMP for problem instances with
moderate workload is slightly more complex compared to
the graph generated for instances with heavy workload. As
a result, the time needed to partition the graph is slightly
higher in the case of instances with moderate workloads.

As Figure 7b shows, the percentage of vehicles with a
negative balance increases over the periods. For all prob-
lem instances, after all periods, more than 92% of vehicles
obtain energy savings. However, for problem instances with
heavy workload, we observe a higher percentage of vehicles
achieving energy savings compared to the moderate and
light workloads. The reason is that in average, the CPU ca-
pacity of instances with heavy workload is higher than that
with lighter workloads (see section 5.1). Thus, as Figure 7c
shows, the percentage of providers decreases compared
to the light and moderate workloads. Consequently, more
energy savings are achieved for these instances, as Figure 7e
shows; and a higher percentage of vehicles achieve energy
savings. Furthermore, for problem instances with heavy
workload, as Figure 7d shows, the CV value is generally less
than that of the lighter workloads because fewer vehicles
have to process their requests locally. This leads to having
higher vehicles achieving energy savings. On the other
hand, as Figure 7e shows, even for the light-workload case
the vehicles can achieve about 7% more energy savings
compared to the baseline, while the moderate and heavy
workloads achieve 16% and 18% energy savings, respec-
tively.

Note that some vehicles, e.g., 8% in the above exper-
iments, may not achieve energy savings in the current
resource sharing period. However, they may achieve energy
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Fig. 8. The effect of data transmission on (a) Execution time of G-ERMP, (b) Percentage of vehicles with negative balance, (c) Percentage of
vehicles selected as providers, (d) Coefficient of Variation (CV) of energy balance, and (e) % of energy savings.

200 400 600 800
1000

1200
1400

1600
1800

2000

# of vehicles

0

20

40

60

80

100

120

140

160

Ve
hi

cle
s w

ith
 n

eg
at

iv
e 

ba
la

nc
e(

%
)

VECMAN RSU-Base

(a)

200 400 600 800
1000

1200
1400

1600
1800

2000

# of vehicles

0.0

0.5

1.0

1.5

2.0

2.5

CV

VECMAN RSU-Base

(b)

200 400 600 800
1000

1200
1400

1600
1800

2000

# of vehicles

0

10

20

30

40

50

60

ES
(%

)

VECMAN RSU-Base

(c)

Fig. 9. The effect of number of vehicles on (a) % of vehicles with negative balance, (b) Coefficient of Variation (CV) of energy balance, and (c) % of
energy savings.

savings in the next sharing periods. It is in our future work
to design an algorithm that considers the initial energy
balance of each vehicle to ensure that all vehicles can achieve
energy savings over multiple resource selection periods.

These experiments show that VECMAN enables vehicles
to achieve energy savings for various workload instances.

5.2.3 Performance vs. Data Size
In this experiment, we investigate the effect of the size
of transmitted data on the performance of VECMAN. We
consider three types of problem instances, light, moderate,
and heavy communication. We assume that the workload of
the vehicles is moderate.

Figure 8a shows the execution time of G-ERMP for the
three types of instances. As we observe, the size of data
does not affect the execution time of the algorithm. For all
instances the execution time of the algorithm is less than 0.2
seconds. Figure 8b shows the percentage of vehicles with
negative balance. We observe that for problem instances

with light communication more vehicles achieve energy
savings compared to the moderate and heavy communica-
tion. Figure 8c shows the percentage of vehicles that are
selected as providers over the energy manager periods.
As the figure shows, the percentage of providers does not
change much with the increase in the data size. The reason
is that the number of providers does not depend on the size
of the data transmitted by the vehicles, but it depends on
how the transmitted data size varies among the vehicles.
Since in all types of problem instances, the size of the data
transmitted follows the uniform distribution, the percentage
of providers will not change. Figure 8d shows the CV of
the energy balance over energy manager periods. Due to
the fact that, in the case of heavy communication vehicles
achieve energy savings in a slower manner, the CV value
is higher than the CV value for the light and moderate
communication instances. However, as Figure 8e shows,
even for the heavy communication the vehicles achieve an
average of 13% energy savings compared to the baseline.
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These experiments show that VECMAN enables vehicles
to achieve energy savings for various instances with differ-
ent data sizes.

5.2.4 Performance vs. Number of Vehicles
Here, we investigate the scalability of VECMAN with re-
spect to the number of vehicles and compare it to a baseline
called RSU-Base, which uses the local RSU to run the re-
quests of the vehicles. RSU-Base orders the vehicle requests
in descending order based on the vehicles’ energy balance
and then, starting from the one with highest balance, it allo-
cates as many requests as possible on the RSU’s resources.

As discussed in Section 5.1, the estimated number of
vehicles that are initially in the coverage area is 720. But,
here we vary the number of vehicles from 200 to 2000 to in-
vestigate the scalability of the algorithm. We use the scenario
generation model and resource selection setup described
in Section 5.1 to generate problem instances. The vehicles’
workload and the size of data is moderate. As Figure 9a
shows, VECMAN enables about 90% of the vehicles to ob-
tain energy savings while RSU-Base, because of its limited
resources, cannot achieve energy savings for more than 50%
of the vehicles when there are more than 1000 vehicles.
As a result, as Figure 9b shows, VECMAN provides a fair
distribution of the energy savings (decreasing CV value)
while RSU-Base has an unbalanced savings distribution
(increasing CV value) due to the limited number of vehicles
that can offload their workload. This behavior, as Figure 9c
shows, translates in a stable 19% energy savings with VEC-
MAN and a decreasing amount of savings for RSU-Base
with an increasing number of vehicles.

These experiments show that VECMAN enables vehicles
to achieve energy savings independently from the number
of vehicles it manages.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed VECMAN, an energy-aware
resource management framework for VEC systems with
the aim of minimizing the energy consumption of the par-
ticipant vehicles. We evaluated VECMAN by performing
an extensive experimental analysis on several problem in-
stances. The results showed that the proposed framework
allows vehicles to achieve between 7% and 18% computa-
tional energy savings compared to a baseline that executes
workload locally and 13% energy savings compared to a
baseline that offloads vehicles’ workloads only to RSUs. In
our future research, we plan to improve VECMAN to (i)
theoretically guarantee the minimum computational energy
consumption for any data transmission size, (ii) explore the
possibility of collaboration between RSUs, and (iii) allow
provider vehicles to temporarily increase their default com-
puting frequency level.
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