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Abstract—In this paper, we address the resource allocation and monetization challenges in Mobile Edge Computing (MEC) systems,

where users have heterogeneous demands and compete for high quality services. We formulate the Edge Resource Allocation

Problem (ERAP) as a Mixed-Integer Linear Program (MILP) and prove that ERAP is NP-hard. To solve the problem efficiently, we

propose two resource allocation mechanisms. First, we develop an auction-based mechanism and prove that the proposed mechanism

is individually-rational and produces envy-free allocations. We also propose an LP-based approximation mechanism that does not

guarantee envy-freeness, but it provides solutions that are guaranteed to be within a given distance from the optimal solution. We

evaluate the performance of the proposed mechanisms by conducting an extensive experimental analysis on ERAP instances of

various sizes. We use the optimal solutions obtained by solving the MILP model using a commercial solver as benchmarks to evaluate

the quality of solutions. Our analysis shows that the proposed mechanisms obtain near optimal solutions for fairly large size instances

of the problem in a reasonable amount of time.

Index Terms—Edge computing, resource allocation, pricing, envy-free mechanism, approximation algorithm.

✦

1 INTRODUCTION

In Mobile Cloud Computing (MCC), centralized cloud
servers are employed as powerful resources for execut-
ing computational tasks of mobile applications [1]. These
systems have been able to mitigate some of the existing
limitations and challenges in mobile devices such as storage
capacity, computation power, and battery life. The long dis-
tance between the centralized servers and end users results
in high response latency which makes MCC systems unsuit-
able for many applications with low latency requirements.
In recent years, Mobile Edge Computing (MEC) has been
introduced to mitigate the existing challenges in MCC. In a
MEC system, data, computation, and storage are migrated
from mobile devices to the servers located at the edge of the
network [2]. Despite the fact that MEC systems are in their
early stages of development, a wide range of applications
is expected to benefit from this technology. Autonomous
driving [3], [4], healthcare [5], [6], and entertainment are just
few examples of such applications. Compared to cloud data
centers, edge systems have much more limited resources
leading to increased competition among users who desire
to acquire high quality services. Due to this challenge, the
efficiency of MEC systems depends heavily on the utilized
resource allocation mechanisms. Any inefficiencies in re-
source allocation might lead to low Quality of Service (QoS),
high energy consumption, and increased operating costs.

Despite all the efforts focused on designing efficient
resource allocation algorithms in MEC systems, moneti-
zation of services, that is, developing incentive schemes
for mobile users and edge providers, is still a significant
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challenge in the development of MEC systems. A report by
National Science Foundation (NSF) on grand challenges in
edge computing [7], identified incentives and monetization
as one of the five grand challenges in the development of
edge computing systems. Decentralized distribution of MEC
servers, heterogeneity of resource requirements, and the
competition between users to acquire high quality services
make the resource allocation and pricing in MEC systems
a challenging problem. Many auction mechanisms devel-
oped for MCC systems are not directly applicable to MEC
settings. In MEC systems, resources are distributed over
multiple levels, users typically request bundles of multiple
types of resources, and they have different valuations for the
services provided from different network levels (i.e., cloud
and edge).

In this paper, we address the monetization challenge
in MEC systems by developing auction-based mechanisms
for resource allocation and pricing. We consider a telecom-
centric MEC system, where the edge resources are located
at the first level of aggregation in the network. Such type
of telecom-centric MEC architecture received considerable
attention in the literature and significant support from
industry and ETSI [8]. Deploying servers at the edge of
the network in a telecom-centric MEC system is expensive,
and therefore, a limited number of such servers are made
available to mobile users. The scarcity of resources at the
edge of the network creates a competitive environment for
the mobile users, and therefore, there is an urgent need
to develop incentive-based resource allocation and pricing
mechanisms for MEC.

1.1 Our contributions

This paper is an extended version of our previous work
on envy-free auction mechanisms for resource allocation
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in edge computing systems [9]. In our previous work,
we developed a greedy resource allocation and pricing
mechanism for edge computing systems which considers
heterogeneous servers and resources of different types. We
assumed that the computing resources have been statically
provisioned in the form of virtual machines (VMs). The
mechanism combines features from both position [10] and
combinatorial auctions [11] and handles heterogeneous re-
source requests from mobile users and heterogeneous types
of resources. It determines envy-free allocations (i.e., alloca-
tions in which no user can improve her utility by exchanging
bids with any user with the same request for resources) and
prices that lead to close to optimal social welfare for the
users.

Different from our previous work, in this paper, we
consider dynamic provisioning of computing resources.
Depending on the user demand, the computing resources
are provisioned as VM instances. For this new setup, we
propose two allocation and pricing mechanisms. The first
mechanism is an extension of our previous mechanism [9].
We prove that the proposed mechanism is individually-
rational and produces envy-free allocations. In addition,
the mechanism requires very small execution time even for
very large problem instances with hundreds of users. The
second, is a linear programming (LP) based approximation
mechanism that does not guarantee envy-freeness, but it
provides a solution that is guaranteed to be within a given
distance from the optimal solution. We evaluate the perfor-
mance of the proposed mechanisms through an extensive
experimental analysis. For small-size instances, we compare
the solutions obtained by our proposed mechanisms with
the optimal solutions obtained by solving the Mixed-Integer
Linear Programming (MILP) model of the problem using the
CPLEX software. Since for large-size instances obtaining the
optimal solution in a reasonable amount of time is not fea-
sible, we compare the performance of the proposed mecha-
nisms against each other. We also investigate the impact of
dynamic provisioning by comparing the performance of the
system under both static and dynamic provisioning.

1.2 Organization

The rest of the paper is organized as follows. In Section 2,
we review the recent work on pricing and allocation in MEC
systems. In Section 3, we formulate the problem of alloca-
tion and pricing. In Section 4, we introduce the proposed
envy-free allocation and pricing mechanism. In Section 5,
we introduce the proposed approximation mechanism. In
Section 6, we describe the experimental setup and discuss
the experimental results. In Section 7, we conclude the paper
and suggest possible directions for future work.

2 RELATED WORK

A wide range of metrics could be considered when optimiz-
ing resource allocation in MEC systems, and depending on
the network system, business rules, and assumptions, differ-
ent constraints should be taken into account. Due to this fact,
researchers have addressed a broad spectrum of resource
allocation problems in these systems. Some researchers have
devoted their efforts on developing novel algorithms for

computation offloading, where computation requirements
of applications, network conditions, and users’ preferences
are taken into account to decide which tasks must be
migrated to remote servers [12], [13], [14], [15], [16], [17].
Service placement has been another area of interest for
researchers, that is, determining the most efficient server to
run a service, where servers could be located in clouds or at
the edge of the network [18], [19], [20], [21], [22].

Monetization of services has been identified as a grand
challenge in edge computing systems [7]. This fact has
led several researchers to concentrate their efforts on de-
signing incentive-based resource allocation mechanisms. In
contrast to the significant efforts focused on developing
incentive-based resource allocation mechanisms for MCC
systems [23], [24], [25], there are only few papers that have
recently addressed this challenge in MEC systems.

Xiong et al. [26] proposed a pricing mechanism for
running mining processes of mobile blockchain applications
on the edge servers. They formulated the problem as a two-
stage Stackelberg game with the aim of maximizing the
profit of the service provider and the individual utilities
of the miners. In another work on employing MEC for
mobile blockchain, Jiao et al. [27] developed a truthful
mechanism that maximizes the social welfare. The authors
have considered a single service provider and multiple
users who are competing for a single type of computational
resource on the edge servers. Luong et al. [28] also stud-
ied the problem of resource allocation in edge computing
systems for mobile blockchain applications. They adopted
a deep learning approach based on a multi-layer neural
network architecture to optimize the loss function which
has been defined as the expected, negated revenue of the
service provider. Li et al. [29] developed a learning-based
pricing mechanism in which no profit information of users
is required. At equilibrium the edge server induces self-
interested users to choose the correct priority class (based
on their delay sensitivity) and make socially optimal of-
floading decisions. However, none of the learning-based
approaches consider relative valuations for different com-
puting resources. Baek et al. [30] developed an auction-
based mechanism for resource allocation in edge computing
in which users bid to get more CPU cycles from the edge
server. The authors showed that there exists a unique Nash
Equilibrium (NE) in the system. Therefore, the payments
of users will tend to be fixed after competitions, regardless
of the initial payments, and the edge seller can predict the
strategies of users and determine the amount of CPU cycles
they need. Chen et al. [31] studied the problem of multiple
resource allocation and pricing in edge computing systems.
They decomposed the problem into a set of sub-problems
in which each sub-problem only considers a single type of
resources. They constructed a Stackelberg game framework
for each subproblem and developed algorithms to compute
the Stackelberg equilibrium for each type of resource.

To the best of our knowledge, the closest work to ours is
by Kiani et al. [32] who proposed a three-level hierarchical
architecture for mobile edge computing and an auction-
based mechanism for VM pricing and resource allocation.
Their pricing mechanism is based on the Amazon’s Elastic
Compute Cloud (EC2) spot pricing. The system determines
the price of each type of VMs in each access point. However,
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their problem assumes a non-combinatorial auction (NC-
Auction) setting, where requests are placed for only one
VM instance of a single type. In that setting, bundles of
VM requests are not allowed, and if a user is willing to
request multiple VM instances of the same type, he/she
needs to submit multiple bids. Submitting multiple bids
for individual VM instances involves the risk of ending up
obtaining only a subset of the requested set of VM instances.
However, our mechanisms allow requests for bundles of VM
instances and for multiple VM instances of the same type.

Several researchers have applied some of the traditional
auction models for solving resource allocation problems
in cloud computing systems [33], [34], [35]. The Vickrey-
Clarke-Groves (VCG) auction has been one of the most pop-
ular truthful auctions [36]. The VCG auction is known to be
incentive-compatible and socially optimal. Since achieving
truthfulness in VCG requires the optimal solution of the
social welfare maximization problem, it is practically infea-
sible to be applied for problems where the exact solution
to the social welfare maximization cannot be obtained in a
reasonable amount of time. Also, other traditional auction
models are not directly applicable to the edge comput-
ing settings where resources are distributed over multiple
levels, users typically request bundles of multiple types
of resources, and they have different valuations for the
services provided from different levels. Since, users request
bundles of multiple types of resources, the MEC auction
mechanisms fall into the class of combinatorial auctions. In
addition, since users have different valuations for resources
at different levels, the mechanisms can be classified as
position auctions. An example of a non-truthful position
auction mechanism is the generalized second price auction
employed by Google to sell online advertising [37].

In this paper, we extend our previous work [9] and
develop efficient pricing and resource allocation mecha-
nisms for a two-level edge computing system with multiple
resources and heterogeneous demands. We consider het-
erogeneous requests from users, where each user requests
for a bundle of different type of resources such as CPU,
memory, and disk. In this system, users are single minded.
This means that all the bundle requests must be allocated
and partial allocation does not have any value for the user.
Also, we assume that the competition is on the two levels
of resources (edge and cloud), where one level (edge) has
more priority for users. This setup is different from the
papers discussed above, where only the edge level servers
have been considered. Thus, our proposed mechanisms
are unique in the sense that they handle the allocation
of resources available at the two-levels of the system by
combining features from both position and combinatorial
auctions. Compared to our previous paper [9], our proposed
mechanisms allow dynamic provisioning of VMs, and do
not require pre-provisioning the VMs.

3 EDGE RESOURCE ALLOCATION AND PRICING

PROBLEM

We address the Edge Resource Allocation Problem (ERAP) for
an edge computing system with one provider that offers
computing resources in the form of Virtual Machines (VMs).
In this network, servers are located either at the edge or on

TABLE 1: Types of VM instances used in the experiments.

Type vCPU Memory (GB) SSD Storage (GB)
medium 1 3.75 (1 unit) 1× 4 (1 unit)
Large 2 7.5 (2 units) 1× 32 (8 units)
Xlarge 4 15 (4 units) 2× 40 (20 units)
2xlarge 8 30 (8 units) 2× 80 (40 units)

the clouds. Since the edge servers are closer to the users,
they prefer to run their applications on the edge servers
to obtain better performance. In fact, due to low latency
requirements of users’ applications, it is always more de-
sirable for them to run their applications on edge servers
that guarantee lower latency. However, the capacity of edge
resources is more restricted than that of the cloud servers.
Therefore, users have to compete to obtain computing re-
sources on the edge servers. The provider uses an auction
model to provide VM instances, where the price of resources
is not pre-defined, but determined by employing a mecha-
nism. The system allows dynamic provisioning of VMs, and
does not require pre-provisioning the VMs. Therefore, the
provider can fulfill dynamic market demands efficiently.

In this network, there are n users who are competing
for resources situated at two levels, edge (l = 1), and cloud
(l = 2), where l denotes the level. In both edge and cloud
servers, m types of VM instances are available to serve
users, where each type of VM instance is characterized by d
types of resources. A VM instance of type j provides qjk
units of resource of type k. Here, we consider the aggregated
resource capacity at each level, that is, the total capacity at
the edge or cloud level. The total amount of resource of
type k available at level l is denoted by Ckl. As an example,
let us consider Amazon’s Elastic Compute Cloud (EC2) M3
family of VM instances (see Table 1). In these instances,
there are three types of resources (d = 3): vCPU (k = 1),
memory (k = 2), and storage (k = 3). A ‘large’ VM instance
of type j = 2 consists of 2 units of vCPU, 2 units of memory,
and 8 units of storage. That is, the instance of type j = 2 is
characterized by q21 = 2, q22 = 2, and q23 = 8.

User i submits a request for a bundle of VM instances
which is denoted by θi = (bi; {rij}) = (bi; ri1, . . . , rim),
where bi is the bid and rij is the number of VM instances of
type j requested by user i. The main reason for considering
the requests as bundles of heterogeneous VMs is that users
often require to execute tasks with different functionalities
and roles on a set of VMs of different types [25]. It is safe
to assume that the total request of a user for each type of
resources is less than the available capacity for that type.
The requests are submitted to a mechanism that determines
the provisioning and allocation of VM instances to users and
the price they have to pay for their allocations.

A resource allocation and pricing mechanism for the
above setting can be viewed as a hybrid of a multi-unit
combinatorial auction [11] and a position auction [10]. It is
a position auction because, (i) the auctioneer never allocates
the bundle request of a user to more than one level, and (ii)
users have different preferences for each level (position) of
resources, with resources at the edge being more preferred.
To characterize the user’s preference for the edge and cloud
level, we define αl as the preference factor for level l which is
determined based on the average distance between users
and resources at level l (obviously, α1 ≥ α2). Since the
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latency is determined by the distance between users and
servers, the preference factor captures the service latency as
well. Furthermore, since there are several VM instances of
the same type in each level and users bid for a bundle of
resources, the problem can also be viewed as a multi-unit
combinatorial auction.

We assume that users are not interested in partially
executing their tasks. Also, they do not obtain any value
by partially executing on edge and partially on the cloud
level (due to the undesirable variable latencies that may
occur by executing their tasks on different levels of the
network). In other words, we assume that users are single
minded [38], that is, a user is only interested in a single
bundle. The user values this bundle and any superset of it
at the same amount, and all other bundles at zero. If the
allocation function allocates the requested bundle of a user
and any superset of it in the first level, then the user values
the bundle and any superset of that bundle at the same
amount. If the allocation function allocates the requested
bundle of a user and any superset of it in the second level,
then the user values it at the same amount (but this value
is less than the value in the first case); otherwise, the user
values the allocation at zero.

Let ai = {a1i , a
2
i } be the allocation for user i determined

by the allocation mechanism, where ali = (ali1, . . . , a
l
im) is

the allocation of resources at level l for user i, and alij is the
number of VM instances of type j allocated to this user on
level l. Thus, the valuation function for user i is as follows,

vi(ai) =











α1bi if ri � a1i
α2bi if ri � a2i and ri 6� a1i
0 otherwise

(1)

where ri � ali, if rij ≤ alij , ∀j ∈ {1, . . . ,m}. The valuation
represents the maximum price that a user is willing to pay
for the requested bundle at each level. Since α1 > α2, users
prefer the allocation at the edge level instead of that at the
cloud level.

In our system, the goal is to maximize the social welfare.
The social welfare, V , is the sum of users’ valuations,
V =

∑2

l=1

∑n
i=1 αl · bi · xil, where xil is a binary decision

variable that is 1, if the bundle requested by user i is
allocated at level l; and 0, otherwise. Maximizing social
welfare helps resource providers increase their revenue, due
to the fact that the system allocates the available VMs to
the users who value them the most [38]. Table 2 shows
the notation we use in the formulation of the problem. The
ERAP can be formulated as a mixed-integer linear program
(MILP) as follows,

ERAP-MILP:

maximize V =
n
∑

i=1

2
∑

l=1

αl · bi · xil (2)

subject to:
n
∑

i=1

m
∑

j=1

rij · qjk · xil ≤ Ckl ∀k, ∀l (3)

2
∑

l=1

xil ≤ 1 ∀i (4)

xil ∈ {0, 1} ∀i, ∀l (5)

TABLE 2: Notation

Notation Description
n Number of of users.
m Types of VM instances.
d Number of resource types.
αl Preference factor for level l.
bi Bid of user i.
rij Number of VM instances of type j requested by user i.
Ckl Capacity of resource of type k available at level l.
qjk Amount of resource of type k for a VM of type j.
wk Weight of resource of type k.
πi Base price for user i.
pi Payment of user i.

The objective function (2) is to maximize the welfare, V ,
where the welfare is the sum of users’ valuations. Con-
straints (3) ensure that the total allocated requests of each
type of resources to each level does not exceed the capacity
of that level. Constraints (4) guarantee that the request
of user i is not allocated to more than one level. Finally,
constraints (5) guarantee the integrality of the decision
variables.

A pricing mechanism M = (A,P ) consists of an al-
location function A = (a1, . . . , an) and a payment rule
P = (p1, . . . , pn). The mechanism determines the allocation
of requested bundles and the payments based on the users’
bids and the available resources in the system. It determines
a base price for each user i, denoted by πi. Based on the base
price, the price of a unit of resource of type k for user i is
defined as πi ·wk, where wk is the weight of the resource of
type k. Here, wk is used to differentiate the values of a unit
of different types of resources. Therefore, the price of a VM

instance of type j for user i is
∑d

k=1 πi · wk · qjk.
We define the payment that user i has to pay to the

provider as,

pi =
m
∑

j=1

d
∑

k=1

rij · qjk · πi · wk (6)

We assume that users have quasi-linear utilities (i.e., ui =
vi − pi) and are rational, in the sense that their goal is to
maximize their utility.

3.1 Complexity of ERAP

Here, we prove that the decision version (ERAP-D) of ERAP

is NP-complete. This implies that ERAP is NP-hard. An
instance of ERAP-D consists of: a set of users, users’ requests
θi = {bi, {rij}}, i = 1, . . . , n, k computational resources
of given capacities {Ckl}, at both levels (i.e., edge and
cloud), preference factor αl at level l, and a bound B ∈ R

+.
The decision problem is to determine whether there exists
an allocation of users such that the social welfare of the
assignment (Equation (2)) is at least B, and no capacity
constraint is violated.

Theorem 1. ERAP-D is NP-complete.

Proof. We prove that ERAP-D is NP-complete by showing
that: (i) ERAP-D belongs to NP, and, (ii) a well known
NP-complete problem is reduced to ERAP-D in polynomial
time. For any arbitrary allocation of requests, the feasibility
check of the capacity constraints and computing the social
welfare (Equation (2)) could be performed in polynomial
time, which implies that ERAP-D is in NP.
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For the second condition, we consider a special case of
the Multiple Multi-dimensional Knapsack Problem, MMKP,
with a fixed number of knapsacks (two knapsacks, one
for each of the two network levels) and a fixed number
of dimensions. For simplicity, we denote this special case
by 2D-MMKP. The multi-dimensional knapsack problem for
any fixed number of dimensions is NP-complete [39]. Also,
it is well known that the multiple knapsack problem is NP-
complete even when the number of knapsacks is two [40].
Therefore, 2D-MMKP is NP-complete.

Now, we show that 2D-MMKP can be reduced to ERAP-

D in polynomial time. Let us define an arbitrary instance of
2D-MMKP with n′ items. Each item i has a value υi and a
weight ωij in dimension j. The capacity of knapsack l in
dimension k is C ′

kl. The decision problem is to determine
whether there is an assignment of items to each of the two
knapsacks, such that the total value of the items is at least L,
while the total weight on each dimension of each knapsack
does not exceed the capacity.

We construct an instance of ERAP-D, called Q, based on
an arbitrary instance of 2D-MMKP, called Q′, such that the
total social welfare of Q is at least B, if and only if, the total
value of Q′ is at least L. Instance Q consists of n items such
that n = n′. The capacity of resources at level l for resources
of type k is defined as Ckl = C ′

kl. Let us assume α1 =
α2 = 1. The bid of user i is defined as bi = υi. Also, we
let rij = ωij , and qjk = 1. We claim that Q has a feasible
assignment with social welfare greater than or equal to B,
if and only if, Q′ has a feasible assignment with the total
value greater than or equal to L. Since we assume qjk = 1,
any feasible solution for Q is also a feasible solution for Q′.
Also, since we assume that α1 = α2 = 1, the social welfare
of the solution for Q is equivalent to the total value obtained
for Q′. Conversely, suppose that there is an assignment in Q′

with total value greater than or equal to L. We assign the
corresponding users to the edge/cloud levels. Clearly, any
feasible solution for Q′ is also a feasible solution for Q and
the total value of the solution for Q′ is equivalent to the
social welfare of the solution for Q.

We proved that ERAP is NP-hard, that is, it is not
possible to find an optimal solution in polynomial time,
unless P = NP. On the other hand, incorporating pricing
into a resource allocation model exacerbates the complexity
of the problem. Given the fact that a resource allocation
mechanism has to be used efficiently for instances with a
large number of requests and in order to solve the problem
in reasonable time, we have to leverage heuristic methods
instead of using commercial solvers. In this paper, we design
two mechanisms for edge resource allocation and pricing
problem, G-ERAP and APX-ERAP. G-ERAP is a greedy
mechanism for resource allocation and pricing in edge
systems, that is individually-rational and envy-free. APX-

ERAP is an LP-based
(

1

2d+1

)

-approximation mechanism

for resource allocation and pricing in edge systems. In the
following sections, we describe the proposed mechanisms
and discuss their properties.

4 ENVY-FREE RESOURCE ALLOCATION AND PRIC-

ING MECHANISM

In this section, we design a greedy mechanism for resource
allocation and pricing, called G-ERAP. G-ERAP, which is
given in Algorithm 1, considers uniform base prices for each
type of VM in the same level. In other words, the price
per unit of each VM type is the same for winners at the
same level of the system, but winners at different levels
should pay differently for the same type of VM instance.
The mechanism is invoked periodically at time intervals of
a specified duration. The allocation and price determined by
the mechanism is valid for the current time interval.

The mechanism collects the requests of users and priori-
tize them based on their bid densities, that is, the average bid
per unit of resource. The bid density of user i is defined as,

Bi =
bi

∑m
j=1

∑d
k=1 rij · qjk · wk

(7)

The mechanism starts the allocation from the edge level for
the requests with relatively high density bid. Once it reaches
to a request which is not fitted to the edge level (according
to the size of request), the mechanism starts the allocation
on the cloud level.

The input to G-ERAP consists of a vector of requests θi,
i = 1, . . . , n from users, and a vector of resource ca-

Algorithm 1 G-ERAP Mechanism

Input: Vector of requests: θi = (bi; {rij})
Vector of resources’ capacities: C = {Clk}

Output: Allocation matrix: X = {xil}
Total welfare: V
Payment vector: P = {pi}

1: V ← 0
2: X ← 0
3: Bi ←

bi∑
m
j=1

∑
d
k=1

rij ·qjk·wk
∀i ∈ {1, . . . , n}

4: Sort users in non-increasing order of their Bi

5: u← 0, u′ ← 0, l← 1, i← 1
6: while i ≤ n do
7: if Clk ≥

∑m

j=1 rij · qjk ∀k ∈ {1, . . . , d} then
8: Clk ← Clk −

∑m

j=1 rij · qjk ∀k ∈ {1, . . . , d}
9: V ← V + αl · bi

10: xil ← 1
11: i← i+ 1
12: else
13: if l = 1 then
14: u← i− 1
15: l← l + 1
16: else
17: u′ ← i
18: break
19: if u′ < n then
20: B∗ ← Bu′+1

21: else
22: B∗ ← Bu′ − ǫ

23: for each i ∈ {1, . . . , n} do
24: if xi2 = 1 then
25: πi ← α2 ·B

∗ + (α1−α2)
2

(Bu +Bu+1)
26: else
27: if xi1 = 1 then
28: πi ← α2 ·B

∗

29: else
30: πi ← 0
31: pi ←

∑m

j=1

∑d

k=1 rij · qjk · πi · wk
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pacities, C . G-ERAP determines how these resources are
allocated to users. The output of the mechanism consists
of the allocation matrix X , where X = [xil], i = 1, . . . , n,
and l = 1, 2, the social welfare V , and the payment vec-
tor P = {pi}. First, the mechanism determines the bid
density for each user (line 3). Then, users are sorted in
non-increasing order of their bid densities (line 4), and VM
instances are allocated to users starting from the first level
(i.e., the edge level). For the current user, the mechanism
checks if there are enough resources at the current level. If
so, the requested VM instances are allocated to the user, and
the social welfare and the capacity are updated (lines 7-11).
If there are not enough resources to allocate the requested
bundle at the first level, then the index of the level is
increased by one (i.e., starting allocation of VM instances on
the second level), and the index of the user is stored as the
first allocated user in the second level. This user is denoted
by u (lines 12-15). The allocation stops once it reaches a user
(denoted by u′) for which there are not enough resources to
satisfy the requested bundle in the second level (lines 16-18).

Next, G-ERAP determines the payments for each
user (lines 19-31). According to the mechanism, user u is
the last user in the sorted order which is allocated to the
first level. Therefore, user u + 1 is the first user in the list
that is to be allocated on the second level. The base price for
each user i allocated at edge level is determined as follows,

πi = α2B
∗ +

(α1 − α2)

2
(Bu +Bu+1) (8)

The base price for each user i allocated at cloud level is
determined as follows,

πi = α2B
∗ (9)

where

B∗ =

{

Bu′+1 if u′ < n

Bu′ − ǫ otherwise
(10)

and u′ is the last allocated user at the cloud level (l = 2). If
some users in the sorted list cannot be allocated at the cloud
level, then B∗ is defined based on the bid density of the first
unallocated user in the sorted list. But, if all the remaining
users from the first level are allocated at the second level,
then B∗ has a value a bit less than the weighted bid of the
last allocated user (i.e., Bu′ − ǫ, where ǫ is a very small
positive real number). Note that if a user is not allocated
the requested bundle, then the base payment is 0 (line 30).
After determining the base payments, G-ERAP determines
the payment of users according to Equation 6 (line 31).

4.1 Properties of G-ERAP

G-ERAP combines features from both position [10] and
combinatorial auctions [11] and is not truthful. Here, we
do not target truthfulness for our mechanism but instead,
we guarantee that it produces envy-free allocations. Truthful
mechanisms are desirable from the user perspective because
truth-telling is the dominant strategy. Thus, users know
that by submitting their true valuation they maximize their
utilities independent of the bids of the other users. However,
truthful mechanisms are not necessarily the most desirable
mechanisms from the auctioneer’s perspective. For exam-
ple, search engines, such as Google prefer to employ the

Generalized Second Price (GSP) mechanism to sell online
advertising [37]. GSP is an envy-free mechanism and is not
truthful, but it generates more revenue than truthful mech-
anisms such as Vickrey-Clarke-Groves (VCG). In addition,
GSP has a simple design and is very fast.

Envy freeness allows us to design a computationally
efficient mechanism suitable for providing services in a two-
level edge computing systems, where the edge resources are
at the first level and the cloud resources at the second. In the
following, we prove that G-ERAP mechanism is individually-
rational and produces envy-free allocations which are two
important and desirable properties of a mechanism [36]. The
first property guarantees that users are willing to participate
in the mechanism, while the second guarantees that when
the auction is terminated, no user would be happier with
the outcome of another user.

Definition 1 (Individual Rationality). A mechanism is indi-
vidually rational if for each user i bidding her true valuation for
the bundle, vi − pi ≥ 0 (i.e., a user reporting her true valuation
for the bundle never incurs a loss).

Lemma 2. The base price of a user allocated at the edge level,
satisfies πi ≤ α1Bu, where u is the last user allocated at the edge
level (l = 1).

Proof. The base price of a user i allocated at the edge level
is given by:

πi = α2B
∗ +

(α1 − α2)

2
(Bu +Bu+1)

≤ α2B
∗ +

(α1 − α2)

2
2Bu ≤ α2B

∗ + (α1 − α2)Bu

≤ α1Bu + α2(B
∗ −Bu)

Because user u is the last user allocated at the edge level,
B∗ ≤ Bu, and thus, πi ≤ α1Bu.

Theorem 3. G-ERAP is individually-rational.

Proof. To prove this theorem, we need to show that the
utility of a user reporting (bidding) her true valuation for the
requested bundle is non-negative. There are three possible
outcomes for a participant user denoted by i:
Case I. User i is allocated to the edge level (Bi ≥ Bu).

vi − pi = α1Bi

m
∑

j=1

d
∑

k=1

wk · rij · qjk − πi

m
∑

j=1

d
∑

k=1

wk · rij · qjk

≥ α1Bu

m
∑

j=1

d
∑

k=1

wk · rij · qjk − πi

m
∑

j=1

d
∑

k=1

wk · rij · qjk

Using the result of Lemma 2, we have, vi − pi ≥ 0.
Case II. User i is allocated to the cloud level (Bu ≥ Bi ≥ B∗).

vi − pi = α2Bi

m
∑

j=1

d
∑

k=1

wk · rij · qjk − πi

m
∑

j=1

d
∑

k=1

wk · rij · qjk

≥ α2B
∗

m
∑

j=1

d
∑

k=1

wk · rij · qjk − πi

m
∑

j=1

d
∑

k=1

wk · rij · qjk

According to Equation (9), πi = α2B
∗. Thus, vi − pi ≥ 0.
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Case III. User i loses the auction (B∗ ≥ Bi). According to
Equation (1), vi = 0. Because user i is not allocated any
bundle of VMs, pi = 0. Thus, vi − pi = 0.

Definition 2 (Envy-Freeness). An allocation is envy-free if no
user can improve her utility by exchanging bids with any user
with the same request for VM instances.

Theorem 4. G-ERAP produces envy-free allocations.

Proof. Let us assume that user i is allocated to the first level
(edge), user i′ is allocated to the second level (cloud), and
user i′′ loses the auction, and all of them have the same
request for VM instances. It is obvious that a user cannot
improve her utility by exchanging bids with another user
with an identical request for VM instances that is allocated
to the same level. Therefore, we only need to show three
cases.

Case I. Users i and i′ cannot improve their utilities by
exchanging their bids. By exchanging their bids, user i′ is
allocated to the first level (edge) and user i is allocated to
the second level (cloud). In this case, we need to show that,

vi(ai)− pi ≥ vi(ai′)− pi′ (11)

and,
vi′(ai′)− pi′ ≥ vi′(ai)− pi (12)

These equations are equivalent to,

α1bi − πi

m
∑

j=1

d
∑

k=1

wk · rij · qjk ≥

α2bi − πi′

m
∑

j=1

d
∑

k=1

wk · rij · qjk (13)

and,

α2bi′ − πi′

m
∑

j=1

d
∑

k=1

wk · ri′j · qjk ≥

α1bi′ − πi

m
∑

j=1

d
∑

k=1

wk · ri′j · qjk (14)

According to the definition of Bi (Equation (7)), we rewrite
Equation (13) as,

α1Bi

m
∑

j=1

d
∑

k=1

wk · rij · qjk − πi

m
∑

j=1

d
∑

k=1

wk · rij · qjk ≥

α2Bi

m
∑

j=1

d
∑

k=1

wk · rij · qjk − πi′

m
∑

j=1

d
∑

k=1

wk · rij · qjk

=⇒ α1Bi − πi ≥ α2Bi − πi′ (15)

Similarly, Equation 14 is equivalent to,

α2Bi
′ − πi′ ≥ α1Bi

′ − πi (16)

Based on Equations (15) and (16), we only need to show
that,

Bi′(α1 − α2) ≤ πi − πi′ ≤ Bi(α1 − α2) (17)

Using the definition of Bu and B∗ from Equations (8) and
(10) we obtain, B∗ ≤ Bi′ ≤ Bu+1 ≤ Bu ≤ Bi. Also, based
on Equations (8) and (9),

πi − πi′ =
(α1 − α2)

2
(Bu +Bu+1) (18)

Thus,

(α1 − α2)

2
(Bi′ +Bi′) ≤ πi − πi′ ≤

(α1 − α2)

2
(Bi +Bi)

(α1 − α2)Bi′ ≤ πi − πi′ ≤ (α1 − α2)Bi (19)

Therefore, for this case, G-ERAP produces envy-free alloca-
tions.

Case II. Users i and i′′ cannot improve their utilities by
exchanging their bids. In this case, user i loses the auction
and user i′′ is allocated to the first level (edge). It is obvious
that the utility of user i does not improve, thus, we only
need to show that the utility of user i′′ does not improve. In
this case, we need to show that, vi′′(ai′′)−pi′′ ≥ vi′′(ai)−pi.
This is equivalent to show that,

0 ≥ α1Bi′′

m
∑

j=1

d
∑

k=1

wk ·ri′′j ·qjk−πi

m
∑

j=1

d
∑

k=1

wk ·ri′′j ·qjk (20)

which is equivalent to show that,

0 ≥ α1Bi′′ − πi (21)

Also, based on Equation (8),

πi ≥ α2B
∗ +

(α1 − α2)

2
(2B∗) =⇒ πi ≥ α1B

∗ ≥ α1Bi′′

(22)
which satisfies Equation (21).

Case III. User i′ and user i′′ cannot improve their utility
by exchanging their bids. By exchanging their bids, user i′

loses the auction and user i′′ is allocated to the second
level (i.e., cloud). In this case, the utility of user i′ does
not improve, thus, we only need to show that the utility
of user i′′ does not improve. For this purpose, we need to
show that, vi′′(ai′′)− pi′′ ≥ vi′′(ai′)− pi′ . This is equivalent
to show that,

0 ≥ α2Bi′′

m
∑

j=1

d
∑

k=1

wk·ri′′j ·qjk−πi′

m
∑

j=1

d
∑

k=1

wk·ri′′j ·qjk (23)

which is equivalent to show that,

0 ≥ α2Bi′′ − πi′ (24)

According to Equation (10), B∗ ≥ Bi′′ . Therefore, based
on Equation (9), πi′ = α2B

∗ ≥ α2Bi′′ which satisfies
Equation (24).

Now, we investigate the time complexity of G-ERAP.
The time complexity of computing the bid densities (line 3)
is O(nmd). Sorting the users (line 4) takes O(n log n). The
main part of the algorithm consists of the loop in lines 7-
19 which executes n times. In each iteration, the available
capacity for each type of resources is compared with the
total request of the user for that resource type (lines 8-9),
which takes O(md). Therefore, the time complexity of G-

ERAP is O(n log n+ nmd).
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5 LP-BASED APPROXIMATION MECHANISM FOR

RESOURCE ALLOCATION AND PRICING

In this section, we focus on designing a mechanism that
provides guarantees with respect to how far from the op-
timal is the solution obtained by the mechanism. We de-
velop an LP-based approximation mechanism, APX-ERAP,
for solving the ERAP. APX-ERAP is an extension of a
( 1

d+1
) - approximation algorithm [41] for the d-dimensional

knapsack problem, MDKP. In fact, ERAP can be viewed as
a weighted multi-dimensional multiple knapsack problem
composed of two knapsacks (two levels of resources). Each
knapsack has d dimensions (d types of resources) with a
limited capacity, Clk, for each dimension k. There are n
items (n users) that are to be assigned to the knapsacks. The
size of item i in dimension k is

∑m
j=1 rij · qjk, the profit of

item i in knapsack l is αl ·bi, and the objective is to maximize
the total profit which is

∑n
i=1 αl · bi · xil.

The original algorithm [41] first solves the LP relaxation
of MDKP which considers only one d-dimensional knapsack.
The LP relaxation solution contains a set of completely
assigned items, I , and a set of at most d fractionally as-
signed items, F . Then, the algorithm considers two feasible
solutions for the knapsack: assigning all items in I to the
knapsack or assigning the most profitable item in F to the
knapsack. The algorithm selects the solution that maximizes
the profit. In APX-ERAP, we extend this idea to solve
the ERAP, which considers two d-dimensional knapsacks.
The LP relaxation solution of ERAP-MILP contains a set
of completely assigned users at the edge level, I1, a set of
completely assigned users at the cloud level, I2, a set of
at most d fractionally assigned items at the edge level, F1,
and a set of at most d fractionally assigned items at the
cloud level, F2. Then, based on these sets, the algorithm
determines the most valuable allocations for the edge level
and the cloud level.

APX-ERAP is given in Algorithm 2. The input to APX-

ERAP consists of a vector of requests from users, θi, and a
vector of resource capacities, C . The output of the mecha-
nism consists of the allocation matrix, X = {xil}, the social
welfare V , and the vector of payments of users, P = {pi}.
The mechanism first sorts the users in non-increasing order
of their bid densities (lines 3-4). This order is used when the
algorithm determines the payment of users. Then, the algo-
rithm solves the LP relaxation of ERAP-MILP by calling LP-

SOLVE(ERAP) and saves the solution in matrix X̄ = {x̄il}
(line 5). Then, it defines Fl = {i : 0 < x̄il < 1} as the set of
users that have fractional allocations at level l, Il{i |x̄il = 1},
as the set of users that are completely allocated on level l,
and νl as the total bids of users who are completely allocated
on level l (lines 6-7). One feasible solution for the problem
is to allocate users in I1 at the edge level and users in I2
at the cloud level. An alternative solution is to select two
users from F1 ∪ F2 and allocate one of them at the edge
level and the other one at the cloud level. This solution is
also feasible, because we assume that the size of each user’s
request is less than the capacity. Based on these facts, the
mechanism determines the allocation at the edge level and
the cloud level.

To obtain the maximum social welfare, the mechanism
compares the two highest bids of users in F1 ∪ F2 with the

Algorithm 2 APX-ERAP

Input: Vector of requests: θi = (bi; {rij})
Vector of resources’ capacities: C = {Clk}

Output: Allocation matrix: X = {xil}
Total welfare: V
Payment vector: P = {pi}

1: V ← 0
2: X ← {0}
3: Bi ←

bi∑
m
j=1

∑
d
k=1

wk·rij ·qjk
∀i ∈ {1, . . . , n}

4: Sort users in non-increasing order of Bi

5: X̄ ← LP-SOLVE(ERAP)
6: Fl ← {i : 0 < x̄il < 1}, l = 1, 2
7: Il ← {i : x̄il = 1}, l = 1, 2
8: νl ←

∑
i∈Il

bi, l = 1, 2
9: max1 ← argmaxi∈F1∪F2

bi
10: max2 ← argmaxi∈F1∪F2\{max1}

bi
11: case1: ν1 < bmax1

and ν2 < bmax2

12: V ← α1 · bmax1
+ α2 · bmax2

13: xmax11 ← 1
14: xmax22 ← 1
15: case 2: ν1 ≥ bmax1

and ν2 ≥ bmax2

16: V ← α1 · ν1 + α2 · ν2
17: xi1 ← 1 ∀i ∈ I1
18: xi2 ← 1 ∀i ∈ I2
19: case3: ν1 < bmax1

and ν2 ≥ bmax2

20: V ← α1 · bmax1
+ α2 · ν2

21: xmax11 ← 1
22: xi2 ← 1 ∀i ∈ I2
23: case4: ν1 ≥ bmax1

and ν2 < bmax1

24: V ← α1ν1 + α2 · bmax1

25: xi1 ← 1 ∀i ∈ I1
26: xmax12 ← 1
27: for each i ∈ {1, . . . , n} do
28: if xi1 = 1 then
29: πi ← α1Bi+1

30: else
31: if xi2 = 1 then
32: πi ← α2Bi+1

33: else
34: πi ← 0
35: pi ←

∑m

j=1

∑d

k=1 rij · qjk · πi · wk

sum of the bids of users in I1, ν1, and the sum of the bids
of users in I2, ν2. For this purpose, it determines the index
of the two highest bidders in F1 ∪ F2, denoted by max1

and max2 (lines 9-10). Then, it considers four possible cases
for values of ν1, ν2, bmax1

, and bmax2
(lines 11-26). In each

case, the mechanism allocates users in such a way that the
social welfare is maximized. In the first case, since ν1 <
bmax1

and ν2 < bmax2
, the mechanism allocates the user

with index max1 at the edge level and user with index max2

at the cloud level. In the second case, since ν1 ≥ bmax1

and ν2 ≥ bmax2
, the mechanism allocates users in I1 at the

edge level and users in I2 at the cloud level. In the third case,
since ν1 < bmax1

and ν2 ≥ bmax2
, it allocates the user with

index max1 at the edge level and users in I2 at the cloud
level. Finally, in the last case, since ν1 ≥ bmax1

and ν2 <
bmax2

, the mechanism assigns users in I1 at the edge level
and user with index max1 at the cloud level.

Next, the APX-ERAP determines the payments for
users (lines 27-35). The algorithm considers variable base
prices in which winners of the same level may have different
base prices. For user i allocated at level l, the base price is
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calculated as,

πi = αlBi+1 (25)

where Bi+1 is the highest bid density of the user after user i
in the non-increasing order of bids.

5.1 Properties of APX-ERAP

Here, we prove that APX-ERAP is a
(

1

2d+1

)

-approximation

mechanism, where d is the number of types of physical
resources. We also show that the mechanism is individually-
rational.

Lemma 5. In the LP relaxation of ERAP, where 0 ≤ xil ≤ 1,
there are at most d users that are fractionally allocated at the edge
level and at most 2d users that are fractionally allocated at the
cloud level.

Proof. Let x̄ = {x̄l
i} be the solution obtained by LP-

relaxation, and Fl = {i : 0 < x̄il < 1} be the set of
users that are fractionally allocated at level l. For user‘i
that is fractionally allocated at the edge level (i ∈ F1),
Constraint (4) and Constraint (0 ≤ xil ≤ 1) are redundant.
The reason is that, since α1 > α2, the only constraint that
does not allow a higher fraction of allocation for user i
at the edge level is the limited capacity (Constraint (3)).
Since Constraint (3) is the only set of constraints in the LP
relaxation model, the total number of constraints related to
the edge level is d. Therefore, any basic feasible solution of
this relaxation has at most d fractional variables at the edge
level (i.e., |F1| ≤ d).

For the set of users that are fractionally allocated at
the cloud level (i ∈ F2), there are two possible subsets:
(i) the set of users that are fractionally allocated at both
edge level and cloud level (i.e., F1 ∩ F2); (ii) the set of
users that are fractionally allocated at the cloud level only
(i.e., F2 \ F1). It is obvious that the number of users in the
first set is not more than d. In the second set, the only
constraint that does not allow a higher allocation is the
capacity constraint (Constraint (3)). Thus, Constraint (4) and
Constraint (0 ≤ xil ≤ 1) are redundant for users in this set.
Therefore, there are at most d fractional variables associated
with the users in this set. Therefore, the total number of
users fractionally allocated at the cloud level is at most
2d.

Theorem 6. APX-ERAP is a
(

1

2d+1

)

-approximation mecha-

nism for ERAP.

Proof. Let X∗ be the optimal allocation matrix and OPT be
the total social welfare of the optimal solution. The solution
to the LP relaxation is an upper bound on the optimal
solution,

OPT ≤ LP ≤ α1 · (
∑

i∈F1

bi +
∑

i∈I1

bi) + α2 · (
∑

i∈F2

bi +
∑

i∈I2

bi)

(26)

For the four possible cases mentioned in Algorithm 2, we
can easily show that,

V ≥ α1 · bi + α2 · bj ∀i ∈ F1, j ∈ F2 (27)

According to Lemma 5, there are at most d items in F1 and
at most 2d items in F2. Therefore,

2d · V ≥ α1 ·
∑

i∈F1

bi + α2 ·
∑

i∈F2

bi (28)

Also, V ≥ α1 · ν1 + α2 · ν2. Thus,

(2d+ 1) · V ≥ α1

∑

i∈F1

bi + α2

∑

i∈F2

bi + α1ν1 + α2ν2 ≥ OPT

(29)

Therefore, V ≥ OPT
2d+1

.

Theorem 7. APX-ERAP is individually-rational.

Proof. To prove this theorem, we need to show that the util-
ity of a user reporting her true valuation for the requested
bundle is non-negative. There are two possible outcomes of
each user i:
Case I. User i is allocated to level l.

vi−pi = αlBi

m
∑

j=1

d
∑

k=1

wk ·rij ·qjk−αlBi+1

m
∑

j=1

d
∑

k=1

wk ·rij ·qjk

Therefore, since Bi ≥ Bi+1, we have, vi − pi ≥ 0.
Case II. User i loses the auction. According to Equation (1),
vi = 0. Because user i is not allocated any bundle of VMs,
pi = 0. Thus, vi − pi = 0.

Now, we investigate the time complexity of APX-ERAP.
The most time consuming part of the algorithm is solving
the LP relaxation of ERAP-MILP, which takes polynomial
time [42]. The other parts of the algorithm also have poly-
nomial time complexity. Therefore, the time complexity of
the algorithm is polynomial.

6 EXPERIMENTAL ANALYSIS

We perform an extensive experimental analysis to eval-
uate the performance of the proposed mechanisms, G-

ERAP and APX-ERAP with respect to several key metrics.
First, we compare the performance of the mechanisms with
that of the optimal solution obtained by solving small-
size instances of the ERAP-MILP problem using the CPLEX
solver [43]. Second, we compare the performance of the
two proposed mechanisms for large-size problem instances.
Since for the large-size instances, obtaining the optimal
solution for ERAP-MILP within a reasonable amount of time
is not possible, we compare the performance of the pro-
posed mechanisms with that of the LP relaxation of ERAP-

MILP. Furthermore, to investigate the impact of dynamic
provisioning, we compare the performance of the mech-
anisms under both dynamic provisioning and static pre-
provisioning. In the following, we describe the experimental
setup and analyze the experimental results.

6.1 Experimental setup

We generate several problem instances with different num-
ber of users, demands, and capacities for the edge and
cloud. In our experiments, the provider offers four types
of VM instances as shown in Table 1. These types of VM
instances are based on Amazon’s Elastic Compute Cloud
(EC2) M3 family of instances. In this family, four types
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TABLE 3: Simulation parameters for small instances

Parameter Distribution

C1, C2
small: 25000
large: 250000

C3
small: 200000
large: 2000000

rik U [0, 10]
w [1, 1, 1]

of VM instances are defined, medium, large, xlarge, and
2xlarge. Each type of VM instance provides a combination
of three types of resources, vCPU, memory, and storage.
We assume that the same types of VMs can be provided at
both the edge and the cloud levels. However, depending on
the capacity of resources, during the dynamic provisioning,
some types of VMs may not be provisioned at the edge or
cloud level. We define 3.75 GB of memory as one unit of
memory and every 4GB of storage as one unit of storage.
Therefore, in the EC2 VM instances, the size of CPU and
memory varies from 1 unit to 8 units, while the size of
storage varies from 1 unit to 40 units. The distribution of
the other parameters that are used to generate problem in-
stances in our simulation experiments are shown in Table 3.
In this table, we denote by U [a, b], the uniform distribution
within interval [a, b]. The bid bi of user i must be propor-
tional to the total amount of request of users i. Therefore, to
generate bid bi, we first draw from U [1, 10], the bid per unit
of resource. Then, we multiply this value by the total size of

the request of user i, Ri =
∑m

j=1

∑d
k=1 wk · qjk · rij . We also

use the uniform distribution to generate rik, the number
of VM instances of each type that are requested by user i.
We evaluate the performance of the mechanisms for both
small-size instances and large-size instances. For small-size
instances, the number of users varies from 100 to 500. Since
the number of VM instances of each type of VM is drawn
from U [0, 10], the total request of users for each type of VM
varies from 100 · U [0, 10] to 500 · U [0, 10]. Thus, to cover
the requests of a reasonable number of users, the available
capacity of each type of resources must be proportional to
these values. For CPU and memory, the available capacity
is 25000, while for the storage the available capacity we
use 200000. For large-size instances, the number of users
varies from 5000 to 50000. Thus, to cover the requests of a
reasonable number of users, the available capacity of CPU
and memory is 250000, while for the storage the available
capacity we use 2000000. The vector of resource weights w,
for the three types of resource is given in the last row of
the table. For each size of instances, we execute G-ERAP

and APX-ERAP, and CPLEX for 10 randomly generated
instances and perform our analysis based on the average
values.

One of the important factors on the performance of the
mechanisms is the amount of available resources at the edge
level and the cloud level. Therefore, we define a parameter
ρEC , called edge-cloud resource capacity ratio, which is the sum
of the ratios of the capacity for each type of resources at the

edge and the capacity at the cloud level, ρEC =
∑d

k=1(
Ck1

Ck2

).
Social welfare and revenue are two important measures

for the efficiency of resource allocation mechanisms. To
characterize the welfare and revenue obtained by G-ERAP

and APX-ERAP, we define two relative metrics: (i) the social

welfare ratio, Vr = V
V ∗

, where V is the social welfare obtained
by G-ERAP or APX-ERAP, and V ∗ is the social welfare
of the optimal solution obtained by CPLEX; and, (ii) the
revenue ratio, Rr = R

R∗
, where R is the revenue obtained

by G-ERAP or APX-ERAP, and R∗ is the revenue obtained
by the optimal solution obtained by CPLEX. R∗ and R are
calculated using Equation (6). Note that, to determine the
revenue of the CPLEX solution, we use the pricing rule
defined for APX-ERAP.

To investigate the impact of the dynamic provisioning
on the performance of the mechanisms, we compare their
performance considering two types of MEC systems: one
that allows dynamic provisioning, and another one in which
the VMs are pre-provisioned. Both systems have the same
amount of physical resources. In the system with pre-
provisioning, the resources are equally provisioned into four
types of VMs. In fact, since we assume the same range of
demand for each type of VMs (the number of requests for
each type of VMs for each user is drawn from the same
distribution), we equally distribute the resources among the
four types of VMs.

The mechanisms are implemented in C++ and the ex-
periments are conducted on an Intel 1.6GHz Core i5 system
with 8 GB RAM. For solving ERAP-MILP, we use the
CPLEX 12 solver provided by IBM ILOG CPLEX optimiza-
tion studio for academics initiative [43].

6.2 Analysis of results

In this section, we compare the performance and the scal-
ability of the mechanisms for different types of problem
instances. First, we investigate the performance of the
mechanisms for small-size instances by comparing with the
CPLEX solution. Then, we investigate the scalability and
performance of the mechanisms for large-size instances.
Finally, we investigate the performance of the mechanisms
on systems with different edge-cloud resource capacity ratio
values.

Performance with respect to the number of users (small-
size instances). First, we investigate the effects of the
number of users on the performance of the mechanisms.
In this experiment, we compare the performance of the
mechanisms against the optimal solutions obtained by solv-
ing ERAP-MILP using CPLEX. For this purpose, we only
consider small-size problem instances. We consider a fixed
amount of total capacity for each type of physical resources
at both edge and cloud levels. We set ρEC for each type of
resource instance to 1/9, that is, 90% of the total capacity
of each type of resources is at the cloud level, and 10% at
the edge level. We perform experiments with two sets of
problem instances. In order to investigate the performance
of the proposed mechanisms for applications with different
latency requirements, we perform our experiments using
two sets of values for (α1, α2). For the first set, we con-
sider the preference factors α1 = 2, and α2 = 1, while
for the second set, we consider α1 = 2, α2 = 0.1. We
consider different number of users, n, ranging from 100 to
500. Figure 1a shows the execution time of G-ERAP, APX-

ERAP, and CPLEX for the two sets of problem instances.
In all cases, the execution time of G-ERAP is less than
one millisecond, significantly smaller than the time required
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Fig. 1: The effect of the total number of users, n, on (a) the execution time; (b) the percentage of served users; (c) the social
welfare; and (d) the revenue (small-size instances).

by CPLEX to obtain the solution. Also, the execution time
of APX-ERAP is less than 11 milliseconds. We observe an
increase in the execution time of G-ERAP with the increase
in the number of users. The reason is that the running
time of the mechanims grows linearly with the number of
users. Overall, both G-ERAP and APX-ERAP are not very
sensitive to the number of users. In contrast, the execution
time of CPLEX is very sensitive to the number of users and it
increases significantly as the number of users in the system
increases. Figure 1b shows the percentage of users served
by the provider when employing the solution determined
by G-ERAP, APX-ERAP, and CPLEX. For instances with
a small number of users, there is no difference between
the solution of the mechanisms in terms of the number of
served users. With an increase in the number of users we
observe that G-ERAP serves more users. The reason is that
G-ERAP greedily allocates users that have high bid density.
Therefore, it may assign users that have relatively higher
bid and smaller request size.

Figure 1c shows the social welfare ratio for the two sets
of problem instances. The results obtained by G-ERAP and
APX-ERAP for both sets of problem instances are fairly close
to those of CPLEX. Furthermore, the value of social welfare
ratio is above 0.93. In most cases, the performance of APX-

ERAP is better than that of G-ERAP, specially for the second
set of problem instances (α1 = 2, α2 = 0.1) in which the
the edge level is more preferred. In fact, both G-ERAP and

APX-ERAP are more sensitive to the number of users for the
second set of instances. The reason is that when applications
have significantly low latency requirements, α1 ≫ α2, any
inappropriate allocation has significant effects on the social
welfare. Figure 1d shows the revenue ratios. We observe no
significant gap between the performance of APX-ERAP and
that of CPLEX. The reason is that APX-ERAP and CPLEX
use the same pricing rule. However, G-ERAP obtains lower
revenue than the other mechanism. The reason is that G-

ERAP considers a lower payment for the allocated users.
Furthermore, we observe that for n ≤ 350, the revenue
obtained by G-ERAP decreases by increasing the number of
users, while for n > 350, the revenue increases by increasing
the number of users. The reason is that for n ≤ 350 the
provider has enough capacity to allocate most of the users.
Thus, by increasing the number of users, more users are
allocated. This results in a higher revenue for CPLEX which
is obtained by adding the bids of the winners. However, the
revenue of G-ERAP which is obtained based on the bids
of the last allocated bidder and the first losing bidder on
the cloud and the edge level, does not grow at the same
rate. For n > 350 when the number of losers increases
(see Figure 1b), the ratio between the highest bidder that
loses and the average bids of winners decreases. Thus, the
revenue of G-ERAP, which is affected by the bids of losers,
gets closer to the revenue of CPLEX which is based on the
bids of the winners. Another observation is that the revenue
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Fig. 2: The effect of the total number of users, n, on: (a) the execution time; (b) the percentage of served users; (c) the social
welfare; and (d) the revenue (large-size instances).

obtained by G-ERAP is closer to that of CPLEX for the
case α1 ≫ α2. The reason is that for these settings the low
revenue obtained by G-ERAP from the cloud side does not
affect the total revenue of the system (due to the small value
of α2).

Performance and scalability with respect to the number
of users (large-size instances). We now evaluate the perfor-
mance of G-ERAP and APX-ERAP by varying the number
of users. We assume a fixed capacity at both edge and cloud
level and vary the number of requests from 5000 to 50000. In
this set of experiments, we assume that 90% of resources are
at the cloud level while only 10% of resources are available
at the edge level. The values of other parameters are given
in Table 3. Since CPLEX is not feasible to be used for solving
such large instances, we will not compare the performance
of our mechanisms against the performance of the optimal
solution obtained by solving ERAP-MILP. Instead, we will
compare the performance of our mechanisms against the
LP relaxation of ERAP-MILP (which gives the upper bound
on the optimal solution). In order to do this, we redefine
the social welfare ratio as the ratio between the social welfare
obtained by G-ERAP or APX-ERAP, and the social welfare
obtained by the LP relaxation solution. We also redefine the
revenue ratio, as the ratio between the revenue obtained by
G-ERAP or APX-ERAP, and the revenue obtained by the LP
relaxation solution.

Figure 2a shows the average execution time of both

G-ERAP and APX-ERAP, for the two sets of problem
instances. We observe that by increasing the number of
users, the execution time of both G-ERAP and APX-ERAP

increases linearly. For example, the average execution time
of G-ERAP for n = 5000 is about 2.5 milliseconds and
for n = 50000, the average execution time is about 18
milliseconds. We observe a similar behavior for APX-ERAP.
The average execution time of APX-ERAP for n = 5000
is about 120 milliseconds and for n = 50000, the average
execution time is about 1790 milliseconds. Figure 2b shows
the average percentage of served users for various numbers
of users. We observe that by increasing the number of users,
a lower percentage of users are served. This is because the
total capacity is fixed and the system is not able to serve
all the requests. Again, we observe that by increasing the
number of users, G-ERAP serves more users. The reason is
that G-ERAP may greedily assign users that have relatively
higher bids and smaller request sizes. Figure 2c shows the
effect of the number of users on the social welfare for the
two sets of problem instances. Both G-ERAP and APX-

ERAP are able to maintain a welfare ratio above 0.95. A sim-
ilar behavior is observed for APX-ERAP when we consider
the effects of the number of users on the revenue (Figure 2d),
where the revenue ratio is kept above 0.95. However, G-

ERAP obtains a lower revenue compared to APX-ERAP.
The reason is that the LP relaxation and APX-ERAP use the
same pricing rule to determine the revenue while G-ERAP
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Fig. 3: The effect of the dynamic provisioning on the social welfare and the revenue (α1 = 2, α2 = 1).

considers a lower payment for the allocated users. We also
observe that by increasing the number of users, the revenue
of G-ERAP gets closer to that obtained by the LP relaxation.
The reason is that by increasing the number of users, the
number of losers increases. Thus, with a high probability, the
ratio between the bid of the highest bidder that loses and the
average bid of the winners decreases. Therefore, the revenue
of G-ERAP, which is affected by the bids of losers, becomes
closer to the revenue obtained by the LP relaxation, which is
based on the bids of the winners. The experimental results
on large-size instances show that G-ERAP can solve fairly
large-size problem instances within 20 milliseconds while
keeping the social welfare and revenue within an acceptable
distance from those obtained by the LP relaxation solution.
These results show that G-ERAP can be employed efficiently
in real world systems with a large number of users.

Performance with respect to dynamic provisioning. Here,
we investigate the effects of the dynamic provisioning on the
performance of the system. For this purpose, we consider a
system in which the number of VM types at each level is
pre-determined (as explained in subsection 6.1). In this set
of experiments, we consider the same setup as that for large
size instances. We vary the number of requests from 5000
to 50000. For more readability, in Figure 3 we show the
performance of the mechanisms in the pre-provisioning (de-
noted by G-ERAP-P and APX-ERAP-P) and dynamic pro-
visioning cases only for preference factors α1 = 2, α2 = 1.
Figure 3a shows that the social welfare of the system in the
pre-provisioning case is lower than in the case of dynamic
provisioning for both G-ERAP and APX-ERAP. Figure 3b
shows a similar behavior of the mechanisms in terms of
the revenue. The reason behind this observation is that in a
system with pre-provisioning, some VMs that are statically
provisioned may not be used as they are the surplus to the
demand, while some other VMs that are more wanted are
scarce. Therefore, the resource manager is not able to utilize
its resources according to the demand, and the social welfare
and the revenue of the system decreases.

Performance with respect to the edge-cloud resource ca-
pacity ratio (large-size instances). In this set of experi-
ments, we investigate the effects of the edge-cloud resource
capacity ratio, ρEC on large-size problem instances with

10000 users. We draw the total capacity of each type of
physical resources from the distributions given in Table 3
and keep it fixed. We allocate the capacity to each level
according to the following edge-cloud resource capacity ra-
tios, ρEC = 1

2
, 1

4
, 1

8
, 1

16
, 1

32
, 1

64
, 1

128
, 1

256
, 1

512
, and 1

1024
. These

ratios will allow us to investigate the performance of G-

ERAP and APX-ERAP on systems with plenty of available
resources at the edge level (ρEC = 1

2
), and systems with

very few resources at the edge level (ρEC = 1

1024
). We per-

form our experiments with two sets of problem instances.
In the first set, we consider the preference factors α1 = 2,
and α2 = 1, while in the second set, we consider α1 = 2,
α2 = 0.1.

Figure 4a shows the effects of ρEC on the average execu-
tion time of both G-ERAP and APX-ERAP, for the two sets
of problem instances. For all values of ρEC , the execution
time of G-ERAP is less than 10 milliseconds, while the
execution time of APX-ERAP is less than 300 millisecond.
Also, the execution time of both G-ERAP and APX-ERAP

are not significantly sensitive to variations of ρEC . Figure 4b
shows the effects of ρEC on the percentage of served users
when considering the solution obtained by G-ERAP and
APX-ERAP. Similarly to the execution time, we observe
that ρEC does not have significant effects on the number
of served users for both G-ERAP and APX-ERAP solutions.
Figure 4c shows the effect of ρEC on the social welfare for
the two sets of problem instances. Both G-ERAP and APX-

ERAP are able to maintain a welfare ratio above 0.9 even
in the worst cases, where resources are very scarce at the
edge level (ρEC = 1

1024
). A similar behavior is observed

for APX-ERAP when we consider the effects of ρEC on
the revenue (Figure 4d), where the revenue ratio is kept
above 0.9 even when the resources at the edge level are very
scarce. The reason is that the same pricing rule is used to
determine the revenue of the LP solution and that of APX-

ERAP. However, G-ERAP obtains a lower revenue than the
other algorithms due to considering a lower payment for
allocated users. We also observe that when the edge level
is more preferred (α1 ≫ α2), the efficiency of the proposed
mechanisms is affected by the distribution of the resources
among the levels. This is because the valuation for the edge
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Fig. 4: The effect of the capacity ratio on: (a) the execution time; (b) the percentage of served users; (c) the social welfare;
and (d) the revenue (large-size instances).

level resources is higher and those resources are scarcer.

Performance comparison with non-combinatorial auc-
tions. In order to investigate the impact of non-
combinatorial bidding on the performance metrics, such
as that of the bidding considered by Kiani et al. [32], we
compare the performance of G-ERAP and APX-ERAP algo-
rithms against that of a class of non-combinatorial auctions
(called NC-Auction). In a non-combinatorial auction the user
who needs a bundle of VM instances composed of VM
instances of various types, submits a separate bid for each
individual type of VM instances in the bundle. This is in
contrast with combinatorial auctions (G-ERAP and APX-

ERAP) in which a user submits a single bid for the whole
bundle of VM instances. Kiani et al. [32] employed such
a type of non-combinatorial auction. In their approach, a
user submits a bid for each type of VM and the users’
requests are ordered in descending order of their bids and
are allocated accordingly to the edge level and the cloud
level. Furthermore, their approach requires static provision-
ing in which VMs are provisioned in advance. We generate
the bids of users for the whole bundle of the request as
described in Subsection 6.1. Thus, the valuation of user i
for the whole bundle is obtained by multiplying the bid per
unit of resource and the total size of the request of user i.
We assume that the VMs are complementary goods (i.e., the
valuation for two VMs A and B is greater than or equal to
the sum of individual valuations of A and B), and thus in

the case of NC-Auction, the valuation per unit of resource
of a partially allocated bundle is reduced between 5-15%
(randomly drawn) compared to the case in which the whole
bundle is allocated.

Figure 5a shows the social welfare ratio obtained by
G-ERAP, APX-ERAP, and NC-Auction for the two sets of
problem instances with (α1 = 2, α2 = 1) and (α1 = 2,
α2 = 0.1). In all instances, the social welfare ratio obtained
by G-ERAP and APX-ERAP is higher than that obtained by
NC-Auction. The reason is that NC-Auction allocates VMs
based on the individual bids, while G-ERAP and APX-

ERAP consider the bid for the whole bundle. Thus, NC-

Auction may greedily allocate a VM instance to a user with
a relatively high individual bid for the VM, while the bids
for the other VMs needed by the user are low. If we consider
this as a bundle the sum of the bids in the bundle is low.
On the other hand the G-ERAP and APX-ERAP allocate
higher value bundles and will obtain a higher social welfare.
Furthermore, the valuation of a user for the whole bundle
of the request is higher than the sum of the individual bids.
Thus, there might be a case in which user i has a higher
individual bid for each type of VM compared to user i′; but
the bid for the whole bundle of user i is lower than that
of user i′. In this case, NC-Auction greedily allocates user i,
while G-ERAP and APX-ERAP allocate resources to user i′

and obtains a higher social welfare.

Figure 5b shows the percentage of the served users for
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Fig. 5: Comparison with NC-Auction: (a) social welfare; and (b) the percentage of served users; (small-size instances).

the two sets of problem instances. We observe that when
the number of users is relatively low (n ≤ 250), G-ERAP,
APX-ERAP, and NC-Auction serve the same percentage of
users. The reason is that there is enough capacity at both
edge and cloud levels to serve the requests. As the number
of users increases, NC-Auction allocates a lower percentage
of users compared to G-ERAP and APX-ERAP. NC-Auction

may not able to utilize resources according to the demand,
thus the number of served users decreases. NC-Auction

allocates VMs one by one based on their individual bids.
Thus, a relatively high percentage of users may receive
a partial allocation, while G-ERAP and APX-ERAP only
allocate whole bundles.

Our experimental results showed that for small problem
instances, both G-ERAP and APX-ERAP yield solutions
close to those obtained by the CPLEX optimal solution.
Compared to APX-ERAP, G-ERAP has a very small exe-
cution time. However, in systems where users have high
preference for the edge level (α1 ≫ α2), APX-ERAP is
more efficient than G-ERAP in terms of social welfare and
revenue. Overall, the low execution time and the acceptable
distance from the optimal solution make G-ERAP mech-
anism suitable for edge computing systems with a large
number of users.

7 CONCLUSION

Monetization of services is one of the grand challenges
in edge computing systems. In this paper, we proposed
two resource allocation and pricing mechanisms in edge
computing systems, where users have heterogeneous re-
quests and compete for high quality services. We proved the
properties of the proposed mechanisms and evaluated their
efficiency by performing an extensive experimental anal-
ysis. For small-size instances, we compared the solutions
obtained by the proposed mechanisms with the optimal
solutions obtained by the CPLEX solver with respect to
execution time, percentage of served users, social welfare
and revenue. For large-size instances, we compared the
performance of the two proposed mechanisms with respect
to the same metrics used for the analysis on small-size
instances. The experimental results showed that the resource
allocation obtained by the proposed mechanisms yield near

optimal solutions. In addition to the quality of solutions,
the small execution time makes the proposed mechanisms
promising for deployment in edge computing systems. As a
future research, we plan to design and implement resource
allocation and pricing mechanisms for edge computing sys-
tems with different network structures. In this research, we
assumed that a user is allocated either at the cloud or edge
level, but not at both. One direction for future research is to
allow allocation of a user request at both the edge and the
cloud level. Another possible direction for future research
could be considering a setting with multiple edge providers.
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