
RESOURCE MANAGEMENT IN EDGE COMPUTING SYSTEMS

by

TAYEBEH BAHREINI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2021

MAJOR: COMPUTER SCIENCE

Approved By:

————————————————
Advisor Date
————————————————

————————————————

————————————————

————————————————

DEDICATION

To my dad who taught me how to stay humble while thinking big, even after his passing.

To my mom, who showed me how to stay strong in difficulties.

To my husband, who has always supported me.

To my daughter, who has brought hope and joy to my life.

ii

ACKNOWLEDGMENTS

I would like to express my special thanks to my advisor, Dr. Daniel Grosu, for all his

continuous help, guidance, and encouragement. He patiently supported me in all stages

throughout my PhD studies and constantly motivated me to diligently move toward my

goals. I would like to also thank Dr. Brocanelli for his support and contributions in

this research. My sincere thanks also go to the rest of my dissertation committee: Dr.

Mashayekhy, Dr. Schwiebert, and Dr. Shi for their helpful comments and encouragement.

This research was supported in part by the US National Science Foundation under grant

no. IIS-1724227.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Tables . viii

List of Figures . ix

Chapter 1: Introduction and Background . 1

1.1 Introduction . 1

1.2 Mobile cloud computing . 1

1.3 Cloudlet . 2

1.4 Fog computing . 3

1.5 Mobile edge computing . 3

1.6 Vehicular edge computing . 6

1.7 Contributions of this research . 6

1.8 Organization . 10

Chapter 2: Related work . 11

2.1 Application placement . 11

2.2 Resource allocation and pricing . 12

2.3 Resource management in VEC systems . 15

Chapter 3: Efficient Algorithms for Multi-Component Application Placement
in Mobile Edge Computing . 18

iv

3.1 Introduction . 18

3.1.1 Our contributions . 20

3.1.2 Organization . 20

3.2 Multi-component application placement problem 21

3.2.1 Complexity of MCAPP . 25

3.3 Algorithms for MCAPP . 27

3.3.1 MATCH-MCAPP algorithm . 27

3.3.2 G-MCAPP algorithm . 31

3.4 An illustrative example . 33

3.4.1 MATCH-MCAPP . 34

3.4.2 G-MCAPP . 36

3.5 Experimental results . 37

3.5.1 Experimental setup . 37

3.5.2 Analysis of results . 41

3.6 Conclusion . 50

Chapter 4: Mechanisms for Resource Allocation and Pricing in Mobile Edge
Computing Systems . 51

4.1 Introduction . 51

4.1.1 Our contributions . 52

4.1.2 Organization . 53

4.2 Edge resource allocation and pricing problem 53

4.2.1 Complexity of ERAP . 58

4.3 Envy-free resource allocation and pricing mechanism 60

v

4.3.1 Properties of G-ERAP . 63

4.4 LP-based approximation mechanism for resource allocation and pricing . . 68

4.4.1 Properties of APX-ERAP . 71

4.5 Experimental Analysis . 73

4.5.1 Experimental setup . 74

4.5.2 Analysis of results . 76

4.6 Conclusion . 86

Chapter 5: VECMAN: A Framework for Energy-Aware Resource Management
in Vehicular Edge Computing Systems 87

5.1 Introduction . 87

5.1.1 Our contributions . 89

5.1.2 Organization . 90

5.2 VECMAN problem formulation . 90

5.2.1 Illustrative example . 91

5.2.2 RSP formulation . 92

5.2.3 ERMP formulation . 94

5.3 VECMAN algorithms . 99

5.3.1 I-Selector algorithm . 101

5.3.2 G-ERMP algorithm . 102

5.3.3 G-ERMP execution: example . 108

5.4 Experimental analysis . 110

5.4.1 Experimental setup . 110

5.4.2 Experimental results . 114

vi

5.5 Conclusion . 121

Chapter 6: Conclusion and Future Research . 122

6.1 Our contributions . 122

6.2 Future research . 125

References . 136

Abstract . 137

Autobiographical Statement . 140

vii

LIST OF TABLES

3.1 Notation . 23

3.2 Example: The values of the cost parameters 34

3.3 Example: The values of the server-component costs, ωij 34

3.4 Example: Assignment costs, σij , in each iteration of G-MCAPP 37

3.5 Simulation parameters . 40

4.1 Types of VM instances used in the experiments. 54

4.2 Notation . 57

4.3 Simulation parameters for small instances 75

5.1 Notation . 99

5.2 Distribution of parameters . 111

viii

LIST OF FIGURES

1.1 A schematic view of mobile cloud computing architecture 2

1.2 The Cloudlet architecture . 3

1.3 MEC architecture . 5

3.1 Matching components to servers. 28

3.2 Example. 33

3.3 Example: Second phase (local search) of MATCH-MCAPP on an instance
with three components and three servers. 35

3.4 Distribution of the edge servers (blue squares) and the frequent paths of the
users (red dots)). 39

3.5 Execution time (microseconds) vs. number of servers for different level of
inter-component communications. 42

3.6 Performance ratio vs. number of servers for different level of inter-component
communications. 44

3.7 Execution time (microseconds) vs. number of components for different
level of inter-component communications. 46

3.8 Performance ratio vs. number of component for different level of inter-
component communications. 47

3.9 The effect of ISR (large-scale instances). 48

4.1 The effect of the total number of users, n, on the performance (small-size
instances). 77

4.2 The effect of the total number of users, n, on the performance (large-size
instances). 80

4.3 The effect of the dynamic provisioning on the social welfare and the rev-
enue (α1 = 2, α2 = 1). 82

ix

4.4 The effect of the capacity ratio on the performance (large-size instances). . . 83

4.5 Comparison with NC-Auction (small-size instances). 85

5.1 Effect of computing power on eCAV’s driving range. 88

5.2 A schematic set up of a VEC system. 91

5.3 Example: A problem instance with six vehicles and three scenarios. 109

5.4 Example: Replica placement obtained by G-ERMP 109

5.5 Scenario generation model. 112

5.6 Performance for various lengths of the resource selection period. 115

5.7 Performance with respect to the workload types. 117

5.8 The effect of data transmission on the performance. 119

5.9 The effect of number of vehicles on the performance. 121

x

1

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Mobile devices have become the primary computing platforms for many applications,

mainly because of their availability and convenience. Many mobile applications require

heavy processing while mobile devices have limited computational resources and storage

capacity. Furthermore, some mobile applications such as video streaming, speech recogni-

tion, and navigation consume a large amount of energy and reduce the battery life of mobile

devices. In the last decade, computing technology has received a significant attention as an

effective solution to the limitations of mobile devices. The main idea of these technologies

is to offload the computation-intensive applications from mobile devices to the resourceful

remote servers. To make the new technologies more efficient, new resource management

and computation offloading methods have been designed. In this chapter, we review the

current mobile computing platforms and their applications.

1.2 Mobile cloud computing

The limitations of mobile devices can be addressed by running applications remotely on

a static infrastructure that does not suffer from these limitations. Mobile Cloud Computing

(MCC) has been introduced to allow mobile applications to perform their computation on

cloud servers. The mobile cloud computing forum defines MCC as follows [1]: “Mobile

cloud computing at its simplest, refers to an infrastructure where both the data storage and

data processing happen outside of the mobile device. Mobile cloud applications move the

computing power and data storage away from mobile phones and into the cloud, bringing

applications and MC to not just smartphone users but a much broader range of mobile

subscribers”. Figure 1.1 shows a high level structure of MCC. In this figure, mobile devices

are connected to the mobile networks via base stations (e.g., base transceiver station, access

point, or satellite). Requests of mobile devices are sent to the central processors that are

connected to the servers which provide mobile network services. Then, requests are sent

2

Figure 1.1: A schematic view of mobile cloud computing architecture

to the cloud via the Internet. In the cloud, controllers process requests to allocate cloud

services to mobile devices [2].

MCC brings about many advantages for mobile users. It extends the battery lifetime

of mobile devices by offloading computation to cloud servers. This reduces the execution

time of applications which results in large amount of power consumption. It also improves

data storage capacity and processing power. Moreover, it leverages the reliability of appli-

cations because the data and applications are stored and backed up on servers. However

in MCC, data centers that are used by cloud services are usually far from the end-users;

therefore, communication between mobile devices and datacenters involves many network

hops and results in high latencies. Thus, MCC cannot be efficient for some applications

that need a quick response time or have a large amount of data transmission [3]. There-

fore, new extensions of MCC are required for these applications. In recent years, several

paradigms have been developed to solve the inefficiency of MCC by sending a portion of

data/computation to the edge of the network instead of cloud data centers. In the rest of

this section, some of these paradigms are reviewed.

1.3 Cloudlet

Cloudlet introduced as an extension of MCC with the aim of “bringing the cloud

closer”, was proposed by Satyanarayanan et al. [4]. A Cloudlet, also known as mobile

micro-cloud [5], is a cluster of multi-core computers with high internal connectivity that is

3

Figure 1.2: The Cloudlet architecture

available for nearby mobile devices.

Figure 1.2 illustrates the Cloudlet architecture. This architecture consists of two main

levels. In the first level, there exists a traditional cloud infrastructure and cloud data cen-

ters. The second level consists of heterogeneous elements that are called Cloudlets. Each

Cloudlet can be seen as a “second-class data center” which brings a better performance to

mobile applications, especially for real time mobile applications. Experimental research

indicates that using Cloudlets for computation offloading for wearable cognitive-assistance

systems improves the response times by 80 to 200 ms and reduces the energy consumption

by 30% to 40% [6].

1.4 Fog computing

Fog Computing was introduced by Bonomi et al. [7] in 2012. Fog computing enables

computation at fog nodes of a network. In fog computing, infrastructures such as switches,

routers, access points, and computers that can provide resource services are considered as

fog nodes. Different from Cloudlets, fogs can be resource-poor or resource-rich [8]. In

fact, fog computing is a scenario where a huge number of heterogeneous devices commu-

nicate and potentially cooperate to process applications and store data.

1.5 Mobile edge computing

Mobile Edge Computing (MEC) was introduced to enable processing data at the edge

of the network in which an edge can be any computing resource of the network [9]. Fog

computing and edge computing are very close concepts. The main difference between

4

them is that the fog computing mostly focuses on the infrastructure scalability while in

edge computing the performance of mobile application is the first priority [10]. In contrast

to Cloudlets, edge nodes are widely deployed and available to all mobile users, not just to

some specific ones. Since edge nodes can be co-located with base stations, they can offer

additional information such as position and mobility of users; while Cloudlets are mostly

stationary computers with fast and stable internet access, offering computing, bandwidth,

and storage resources to nearby mobile users; and users access them via a local area net-

work such as Wi-Fi. Not being a part of mobile network, Cloudlets do not share network

operator related knowledge [11].

The concept of edge computing dates back to the time when Akamai [12] introduced

Content Delivery Networks (CDNs) to reduce the average time of loading pages. In this

system, CDN nodes are placed close to the users to prefetch and cache web content. These

nodes also customize some content of web pages. For example, they customize the adver-

tisement on the web pages according to the location of users. CDNs especially improve

the performance of video content, because the bandwidth savings from caching is sig-

nificant [10]. Edge computing generalizes the CDN concept in which cloud computing

infrastructure is leveraged by deploying local edge nodes. Figure 1.3 illustrates the MEC

architecture. The main components of this architecture are as follows,

• Mobile devices: mobile users may request over time to run a specific application.

They connect to the base stations which translate radio signals so that they can be

routed through the networks.

• Mobile network operators: this part manages the base stations, mobile backhaul, and

MEC servers. MEC servers, based on the network conditions, may process a request

from mobile users directly or forward it to the remote data centers.

• Internet backhaul: internet backhaul contains internet infrastructure, routers, etc.

• Service providers and cloud data centers: after processing the request of mobile

5

Figure 1.3: MEC architecture

users, the service providers assign the cloud services in the data centers to the mobile

users.

The proximity of edge nodes helps cloud computing to improve its performance mostly

in three different ways [10]:

• Reducing the response time of services: proximity of edge nodes to the mobile users

reduces end-to-end latency to services that are placed on the edge of the network.

This is valuable especially for real time applications that need very short response

times.

• Increasing the scalability of the network: by processing the data that comes from

different sources such as video cameras, sensors, and navigators, the workload of the

cloud data centers is significantly decreased and only extracted data and meta data

must be transferred to them.

• Enhancing fault tolerance of the cloud services: When a cloud service is not avail-

able because of network/cloud failures, or it encounters denial-of-service attack, this

service can be run on a nearby edge node temporarily.

In MEC systems, since we are dealing with smaller and more distributed servers, we ex-

pected a higher operating cost for servers and more restricted capacity compared to central-

6

ized cloud servers. On the other hand, non-deterministic parameters such as users move-

ment or task arrivals can significantly impact the performance of the system if they are

neglected.

1.6 Vehicular edge computing

Vehicular Edge Computing (VEC) systems [13] are edge computing systems where

computational nodes can be deployed in cell towers, Road-Side Units (RSUs), and within

connected vehicles. In fact, VEC systems are mainly composed of connected vehicles that

have three main characteristics. First, they have an on-board computing node for workload

execution (e.g., image recognition, infotainment). Second, they can perform Vehicle-to-

Vehicle (V2V) and Vehicle-to-Roadside (V2R) wireless communication, so the vehicles

can exchange workload. Third, assuming electric vehicles, their driving range is limited by

the energy available in the battery.

The workloads of modern vehicles need a substantial amount of processing power in

order to meet their performance requirements. Offloading workload to remote cloud-based

computing systems is often limited by a high communication latency, which significantly

degrades performance.

In a VEC system, computational nodes can be deployed in cell towers, Road-Side Units

(RSUs), and within connected vehicles so that local data and workloads can be processed

with a much lower latency compared to using the cloud nodes. On the other hand, these

edge nodes have often limited computing capacities and energy budgets (e.g., in electric

vehicles). These characteristics make the problem of ensuring good performance while

minimizing the energy consumption in VEC systems a challenging task.

1.7 Contributions of this research

Efficient resource allocation on edge servers is one of the main challenges in edge com-

puting. Due to the mobility of users, a poor allocation might impose high execution costs.

Application placement is an important problem in edge computing which is associated with

7

deciding where the application should be run. In this problem, each application is repre-

sented as a graph in which each node is a component of the application and each weighted

edge between two nodes indicates the communication between two components. Physi-

cal resources can also be represented by a graph in which the nodes represent computing

resources (servers) and the edge between each two nodes denotes a communication link

between two servers. The application placement problem is the problem of mapping appli-

cation graphs onto the physical graphs. Application placement in edge computing has to

consider several issues that were not present in the data-center or cloud computing settings.

After the initial placement, mobile users may move to different locations [14, 15]. There-

fore, an optimal decision made at the time of receiving a request may not remain optimal

for the whole duration of user’s application execution. Furthermore, compared to the cloud

data centers, edge nodes have more restricted capacity. Therefore, it is not feasible to run

a large size application on a single edge node. An efficient way to resolve this issue is to

allow users to run the components of their applications on multiple edge nodes.

Application placement. In this dissertation, we address the Multi-Component Application

Placement Problem (MCAPP) in MEC systems. We formulate this problem as a Mixed-

Integer Linear Program (MILP) with the objective of minimizing the total cost of running

the applications. In our formulation, we take into account two important and challeng-

ing characteristics of MEC systems, the mobility of users and the network capabilities.

We analyze the complexity of MCAPP and prove that it is NP -hard, that is, finding the

optimal solution in reasonable amount of time is infeasible. We design two algorithms,

one based on matching and local search and one based on a greedy approach. We eval-

uate the performance of the algorithms by conducting an extensive experimental analysis

driven by two types of user mobility models, real-life mobility traces and random-walk.

The results show that the proposed algorithms obtain near-optimal solutions and require

small execution times for reasonably large problem instances. The results of this research

are published in Proceedings of the Second ACM/IEEE Symposium on Edge Computing

8

(SEC-2017) [16], IEEE Transactions on Cloud Computing [17], and the Proceedings of the

International Conference on Edge Computing (EDGE-2019) [18].

Resource allocation and pricing. In MEC systems, due to limitation on resources ca-

pacity, the competition to get these resources is high. Thus, monetization and resource

allocation is considered as one of the major challenges in these systems. In other words,

the resource provider has to decide how to allocate and price edge/cloud resources so that

a given system’s objective, such as revenue or social welfare, is optimized. One promis-

ing approach is to allocate these resources based on auction models, in which users place

bids for using a certain amount of resources. In another contribution of this research, we

address the problem of resource allocation and pricing in a two-level edge computing sys-

tem. We consider a system in which servers with different capacities are located in the

cloud or at the edge of the network. Mobile users compete for these resources and have

heterogeneous demands. We design an auction-based mechanism that allocates and prices

edge/cloud resources. The proposed mechanism is novel in the sense that it handles the

allocation of resources available at the two-levels of the system by combining features

from both position and combinatorial auctions. We show that the proposed mechanism is

individually-rational and produces envy-free allocations. The first property guarantees that

users are willing to participate in the mechanism, while the second guarantees that when

the auction is finished, no user would be happier with the outcome of another user. We

evaluate the performance of the proposed mechanism, G-ERAP, by performing extensive

experiments. The experimental results show that the proposed mechanism is scalable and

obtains efficient solutions. The results of this research are published in the Proceedings

of the Third ACM/IEEE Symposium on Edge Computing (SEC-2018) [19]. An extended

version of this paper in which we also developed an LP-based approximation mechanism

that does not guarantee envy-freeness, but it provides solutions that are guaranteed to be

within a given distance from the optimal solution has been accepted for publication in the

9

IEEE Transactions on Parallel and Distributed Systems [20].

Resource management in VEC systems. The low-latency requirements of connected

electric vehicles and their increasing computing needs have led to the necessity to move

computational nodes from the cloud data centers to edge nodes such as road-side units

(RSU). However, offloading the workload of all the vehicles to RSUs may not scale well to

an increasing number of vehicles and workloads. To solve this problem, computing nodes

can be installed directly on the smart vehicles, so that each vehicle can execute the heavy

workload locally, thus forming a vehicular edge computing system. On the other hand,

these computational nodes may drain a considerable amount of energy in electric vehicles.

It is therefore important to manage the resources of connected electric vehicles to minimize

their energy consumption. One promising way to improve the energy efficiency is to share

and coordinate computing resources among connected EVs. However, the uncertainties

in the future location of vehicles make it hard to decide which vehicles participate in re-

source sharing and how long they share their resources so that all participants benefit from

resource sharing. We propose VECMAN, a framework for energy-aware resource manage-

ment in VEC systems composed of two algorithms: (i) a resource selector algorithm that

determines the participating vehicles and the duration of resource sharing period; and (ii)

an energy manager algorithm that manages computing resources of the participating vehi-

cles with the aim of minimizing the computational energy consumption. We evaluate the

proposed algorithms and show that they considerably reduce the vehicles’ computational

energy consumption compared to the state-of-the-art baselines. Specifically, our algorithms

achieve between 7% and 18% energy savings compared to a baseline that executes work-

load locally and an average of 13% energy savings compared to a baseline that offloads

vehicles’ workloads to RSUs. The results of this research were published in the IEEE In-

ternational Conference on Cloud Engineering (IC2E- 2020) [21], IEEE Transactions on

Mobile Computing [22], and the Proceedings of the 2nd International Workshop on Edge

Systems, Analytics and Networking (EdgeSys-2019) [23].

10

1.8 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present the related

work. In Chapter 3, we present our research on the design of efficient algorithms for multi-

component application placement problem in edge computing system. In Chapter 4, we

present mechanisms for resource allocation in edge computing systems. In Chapter 5, we

present VECMAN, a framework for energy-aware resource management in VEC systems.

Finally, in Chapter 6, we present our conclusion and future research.

11

CHAPTER 2

RELATED WORK

Edge nodes’ proximity to users is a promising feature of MEC that can be exploited

to improve the latency of the system. On the other hand, the mobility of users, the lim-

ited capacity of resources, and the dynamic nature of demands are critical issues that can

affect the performance of the system. In this chapter, we survey the development of vari-

ous methods for computation offloading, resource allocation, and application placement in

edge computing systems. We aim at analyzing how the mentioned challenges have been

addressed in the literature.

2.1 Application placement

The existing techniques for application placement developed for cloud computing/data

centers settings [24, 25] cannot be applied directly in the MEC setting because, when mak-

ing the placement decisions, they do not consider the mobility of users and the differences

in latency experienced by users at different locations. In this section, we review the ex-

isting literature on computation offloading and application placement problems in MEC

addressing the above critical issues.

Many studies focused on computation offloading, where the computation requirements

of applications and network conditions are taken into account to decide which tasks must

be run locally and which tasks must be migrated to remote servers. In some studies [26,

27, 28, 29, 30], energy consumption and computing latency have been considered as im-

portant performance metrics in optimizing computation offloading. The revenue of the

service providers [31] and system’s utility [32] were also considered as objectives in the

computation offloading problem.

Several approaches for solving variants of the application placement problem in MEC

have been proposed recently. Many of the dynamic application placement approaches for-

mulated the problem as a sequential decision making problem in the framework of Markov

Decision Processes (MDPs). Ksentini et al. [33] modeled the application/service migra-

12

tion problem considering the mobility of users in the Follow Me Cloud paradigm using

MDPs [34]. In their formulation, they considered one dimensional mobility patterns. They

implemented the value iteration algorithm in MATLAB to find the optimal application mi-

gration policy. Urgaonkar et al. [35] modeled the application placement problem as an

MDP. To reduce the state space, they converted the problem into two independent MDP

problems with separate state spaces and designed an online algorithm for the new problem

that is provably cost-optimal. Wang et al. [36] presented a novel online algorithm for the

application placement problem in the context of MEC. They modeled the problem as an

MDP in which states are defined only based on the distance between user and servers.

Some researchers studied application placement problems for specific types of applica-

tion graphs. Wang et al. [37] designed an online approximation algorithm for the placement

problem in which both the application and the resource graphs are trees. The considered

objective is to minimize the maximum weighted cost on each physical node and link of the

system. Pei et al. [38] and Zou et al. [39] investigated the service chain embedding problem

in MEC systems in which the application graph is a linear chain.

A few studies have focused on the placement of both servers and applications in a given

network to improve the system performance [40, 41, 42, 43]. Balancing the load of servers

and minimizing the delay of applications are two objectives that are considered in these

studies. Several solutions have been proposed for the application placement problem that

minimize the cost or the latency [44, 45, 46, 47]. These studies focused on the placement

of the whole application on a single server and did not consider the possibility of assigning

different components of an application to different edge servers.

2.2 Resource allocation and pricing

A wide range of metrics could be considered when optimizing resource allocation in EC

systems, and depending on the network system, business rules, and assumptions, different

constraints should be taken into account. Due to this fact, researchers have addressed a

broad spectrum of resource allocation problems in these systems. Some researchers have

13

devoted their efforts on developing novel algorithms for computation offloading, where

computation requirements of applications, network conditions, and users’ preferences are

taken into account to decide which tasks must be migrated to remote servers [48, 49, 50,

51, 52, 53]. Service placement has been another area of interest for researchers, that is,

determining the most efficient server to run a service, where servers could be located in

clouds or at the edge of the network [16, 29, 54, 55, 56].

Monetization of services has been identified as a grand challenge in edge comput-

ing systems [6]. This fact has led several researchers to concentrate their efforts on de-

signing incentive-based resource allocation mechanisms. In contrast to the significant ef-

forts focused on developing incentive-based resource allocation mechanisms for MCC sys-

tems [57, 58, 59], there are only few studies that have recently addressed this challenge in

MEC systems.

Xiong et al. [60] proposed a pricing mechanism for running mining processes of mobile

blockchain applications on the edge servers. They formulated the problem as a two-stage

Stackelberg game with the aim of maximizing the profit of the service provider and the in-

dividual utilities of the miners. In another work on employing MEC for mobile blockchain,

Jiao et al. [61] developed a truthful mechanism that maximizes the social welfare. The

authors have considered a single service provider and multiple users who are competing

for a single type of computational resource on the edge servers. Luong et al. [62] also stud-

ied the problem of resource allocation in edge computing systems for mobile blockchain

applications. They adopted a deep learning approach based on a multi-layer neural net-

work architecture to optimize the loss function which has been defined as the expected,

negated revenue of the service provider. Li et al. [63] developed a learning-based pric-

ing mechanism in which no profit information of users is required. At equilibrium the edge

server induces self-interested users to choose the correct priority class (based on their delay

sensitivity) and make socially optimal offloading decisions. However, none of the learning-

based approaches consider relative valuations for different computing resources. Baek et

14

al. [64] developed an auction-based mechanism for resource allocation in edge computing

in which users bid to get more CPU cycles from the edge server. The authors showed that

there exists a unique Nash Equilibrium (NE) in the system. Therefore, the payments of

users will tend to be fixed after competitions, regardless of the initial payments, and the

edge seller can predict the strategies of users and determine the amount of CPU cycles

they need. Chen et al. [65] studied the problem of multiple resource allocation and pric-

ing in edge computing systems. They decomposed the problem into a set of sub-problems

in which each sub-problem only considers a single type of resources. They constructed a

Stackelberg game framework for each subproblem and developed algorithms to compute

the Stackelberg equilibrium for each type of resource. Kiani et al. [66] proposed a three-

level hierarchical architecture for mobile edge computing and an auction-based mechanism

for VM pricing and resource allocation. Their pricing mechanism is based on the Amazon’s

Elastic Compute Cloud (EC2) spot pricing. The system determines the price of each type

of VMs in each access point. However, their problem assumes a non-combinatorial auction

(NC-Auction) setting, where requests are placed for only one VM instance of a single type.

In that setting, bundles of VM requests are not allowed, and if a user is willing to request

multiple VM instances of the same type, he/she needs to submit multiple bids. Submitting

multiple bids for individual VM instances involves the risk of ending up obtaining only a

subset of the requested set of VM instances. However, our mechanisms allow requests for

bundles of VM instances and for multiple VM instances of the same type.

Several researchers have applied some of the traditional auction models for solving re-

source allocation problems in cloud computing systems [67, 68, 69]. The Vickrey-Clarke-

Groves (VCG) auction has been one of the most popular truthful auctions [70]. The VCG

auction is known to be incentive-compatible and socially optimal. Since achieving truth-

fulness in VCG requires the optimal solution of the social welfare maximization problem,

it is practically infeasible to be applied for problems where the exact solution to the social

welfare maximization cannot be obtained in a reasonable amount of time. Also, other tra-

15

ditional auction models are not directly applicable to the edge computing settings where

resources are distributed over multiple levels, users typically request bundles of multiple

types of resources, and they have different valuations for the services provided from dif-

ferent levels. Since, users request bundles of multiple types of resources, the EC auction

mechanisms fall into the class of combinatorial auctions. In addition, since users have

different valuations for resources at different levels, the mechanisms can be classified as

position auctions.

In fact, having a bundle of requests from each user classifies the auction as a combi-

natorial auction, while the relative valuation of resources puts the auction in the class of

position auctions. Many traditional mechanisms designed for combinatorial auctions guar-

antee the truthfulness, while the truthfulness of the position auctions is not guaranteed [71].

An example of a non-truthful position auction mechanism is the generalized second price

auction employed by Google to sell online advertising [72].

2.3 Resource management in VEC systems

A highly efficient offloading mechanism for VEC systems has to overcome several

challenges that do not exist or are less significant in the cloud-based systems. Due to the

dynamic nature of VEC systems that mainly stems from the mobility of vehicles, an optimal

offloading for the current setting of the network might turn to the least efficient offloading

in few seconds/minutes. Furthermore, the variability of the available resources over time

affects two important performance metrics, i.e., the reliability of the network and the QoS.

High QoS. Some of the existing challenges of resource management in VEC systems have

been addressed from different perspectives and using different approaches. Several studies

focused on ensuring high QoS. Zheng et al. [73] addressed the variability of the resources in

a system in which clouds, parked vehicles, and mobile vehicles provide computational ser-

vices. In their system, the goal is to maximize the amount of power saving of vehicles while

the latency and transfer costs are minimized. Yu et al. [13] proposed a hierarchical VM mi-

16

gration mechanism for mobile vehicles by integrating computing resources in data centers,

RSUs, and vehicles. They presented a layered structure that allows vehicles to select their

services resiliently. Yang et al. [74] proposed a task offloading scheme for cooperative edge

servers scenario with the aim of minimizing the cost of offloading while guaranteeing the

QoS. However, these studies considered integrated edge resources when making offloading

decisions and did not consider the distributed and mobile nature of servers.

High Reliability. Some researchers have also considered speculative execution as a tech-

nique to ensure high QoS and low risk of failure. Zhiyuan et al. [75] studied the task repli-

cation problem to minimize the probability of deadline violations. Zhu et al. [76] proposed

an online algorithm for task replication in vehicular fog computing with the aim of mini-

mizing the maximum service latency while minimizing the total quality loss of tasks. Sun

et al. [77] proposed a learning based algorithm for task replication in VEC systems. Their

objective is to minimize the average offloading delay of tasks. Zhou et al. [78] considered

a cooperative vehicle infrastructure system and addressed the execution time minimiza-

tion problem. Bahreini et al. [23] developed a speculative execution framework for VEC

systems, where the number of replicas for each requests is predetermined and is given by

an energy manager. The replica manager decides how to allocate copies of the vehicles’

workload on different nodes to ensure high reliability and low latency. Hou et al. [79] de-

veloped a computation offloading mechanism for latency-sensitive applications. To ensure

high reliability, they jointly optimized task allocation and the reprocessing of failed sub-

task executions. However, these studies do not balance the number of replicas with the

energy consumption: having a high number of replicas may lead to a small improvement

in robustness to failure while causing energy waste on vehicles.

QoS vs. Energy. Several solutions have been proposed to trade off between latency and

energy consumption in mobile edge computing systems [80, 81, 82, 83, 84, 85, 86]. These

studies investigate how to account for the interference of multiple service requesters shar-

17

ing service providers with consideration of latency and energy consumption. In particular,

Viswanathan et al. [85] collected statistics on availability of connections between service

requesters and service providers to improve the QoS. Workload is then migrated across ser-

vice providers to handle unexpected scenarios (e.g., loss of connectivity or empty battery).

However, all the above solutions have a single point of failure, i.e., if the selected service

provider fails, the workload has to be migrated or offloaded again, which increases the

latency. Note that some of the studies mentioned above (e.g., [13, 76, 77]) use task replica-

tion to reduce the risk of failure but without consideration of the impact of the number of

replicas on the energy consumption.

Resource allocation in VEC ssytems has received a considerable attention in the lit-

erature. Various approches have been developed for optimizing the performance of VEC

systems. However, to the best of our knowledge, none of the above studies consider at the

same time the problems of (a) determining the duration of resource sharing, (b) coordinat-

ing the computing resources among moving vehicles, and (c) determining the number of

replicas for vehicular workloads to minimize the energy consumption of vehicles without

violating the desired QoS levels.

18

CHAPTER 3

EFFICIENT ALGORITHMS FOR MULTI-COMPONENT APPLICATION

PLACEMENT IN MOBILE EDGE COMPUTING

3.1 Introduction

The widespread usage of mobile devices generates an unprecedented amount of data

that often requires real-time processing. This processing necessitates computational re-

sources and storage capacity not available on mobile devices. Cloud computing is a promis-

ing technology that allows the mobile applications to offload their computations on cloud

servers [87, 88, 89]. The main objective of offloading is to extend the battery life of mo-

bile devices by executing heavy-computational components of the applications on remote

servers. However, in cloud settings, computing services are usually far away from the end-

user, and therefore, the communication between mobile devices and servers requires many

network hops and results in high latencies. This is unfeasible for applications that require

a very low latency or transmit large amounts of data [3].

In order to resolve this issue, several paradigms such as Cloudlet [4], Fog Comput-

ing [7], Follow Me Cloud [34], and Mobile Edge Computing (MEC) [90] have been re-

cently proposed. The core idea of these paradigms is to offload a portion of data/computation

to the edge of the network rather than offloading it to the cloud data-centers. Satya-

narayanan et al. [4] proposed Cloudlet with the aim of bringing the cloud closer to the

end user. A Cloudlet, also known as a micro-cloud, is a cluster of multi-core computers

with high internal connectivity that is available to nearby mobile devices and provide com-

puting, bandwidth, and storage services. Users access the Cloudlet servers via a local area

network such as Wi-Fi. MEC [90] has been recently introduced to provide the required

infrastructure for low latency computing services through running mobile applications at

the edge of the network, where an edge can be any computing resources of the network.

In MEC, the edge nodes are widely distributed in the network and available to all mobile

users. On the other hand, being co-located with base stations, edge nodes have access to

19

some additional information such as location and mobility of users.

One of the challenging issues in MEC systems is the resource scarcity. Compared to the

cloud data centers, edge nodes have more restricted capacity. Therefore, it is not feasible

to run a large size application on a single edge node. An efficient way to resolve this

issue is to allow users to run the components of their applications on multiple edge nodes.

Platforms such as Open Edge [91] and Open Fog [92] are developed for this purpose. They

deploy virtualization techniques to share the resources of the edge nodes that are located

in the same geographical region. In these platforms, finding an efficient placement for the

components of an application on the multiple nodes is a major challenge.

Mobile users change their locations dynamically and the current assignment of the ap-

plication to the edge nodes might not be the best in terms of the costs involved. In ad-

dition to the mobility of users, the resource availability and network conditions may also

change dynamically. Therefore, in order to provide high quality services with the minimum

costs, the application may need to migrate from one edge/core node to another, dynami-

cally. The problem becomes more complex when an application has multiple components

with heterogeneous requirements. The problem of assigning components of an applica-

tion to the edge/core nodes such that the total cost of execution is minimized is called the

Multi-Component Application Placement Problem (MCAPP). The components of a users’

application can be run either on the core cloud, or on the edge of the network.

In MCAPP, an application can be represented as a graph in which the components of

the application are the vertices, and the edges between two vertices represent the com-

munication between the corresponding components. Similarly, physical resources can be

represented as a graph in which vertices are the computing resources (i.e., servers) and the

edges between two vertices represent the communication links between the corresponding

physical resources. Thus, MCAPP can be viewed as the problem of mapping the applica-

tion graph onto the resource graph.

20

3.1.1 Our contributions

Our main contributions are as follows:

(1) Formulate the MCAPP problem as a Mixed Integer Non-Linear Program (MINLP).

Our formulation of the problem departs from the existing work since it does not

impose any restrictions on the topology of the graphs characterizing both the appli-

cations and the physical resources.

(2) Prove that MCAPP is NP -hard, which means that it is not solvable in polynomial

time, unless P = NP .

(3) Design two efficient algorithms for solving MCAPP. Our goal is to design heuristic

algorithms based on purely combinatorial techniques such as matching and local

search, and to avoid the use of stochastic control-based approaches. The proposed

algorithms have low complexity, and thus, add a negligible overhead to the execution

of the applications.

(4) Evaluate the performance of the proposed algorithms by an extensive experimental

analysis. The experiments are driven by two types of user mobility models, one

derived from real-life mobility traces [93] and the other one based on the random-

walk model [94]. We compare the performance of our algorithms against the optimal

solution under the two types of mobility models. Our experimental results show

that the proposed algorithms obtain near optimal solutions and require very small

execution times.

3.1.2 Organization

The rest of the chapter is organized as follows. In Section 3.2, we introduce the multi-

component application placement problem and present its MINLP formulation. In Sec-

tion 3.3, we present the proposed heuristic algorithms. In Section 3.4, we illustrate the

execution of the algorithms on a small instance of the problem. In Section 3.5, we present

21

and analyze the experimental results. In Section 3.6, we conclude the chapter and suggest

possible directions for future research.

3.2 Multi-component application placement problem

In this section, we formulate MCAPP in MEC systems. We consider a time slotted

system, where T is the total number of time slots required to complete the execution of

the application. The goal of the system is to determine the allocation of the components of

the application in each time slot so that the total cost over T time slots is minimized. We

formulate the problem for each time slot, where the relocation costs are determined by the

allocation on the previous time slot. To make the formulation easier to understand and to

avoid the use of an additional index to indicate the time slot for each variable, we present

the problem only for one time slot.

In this formulation, we consider a two-dimensional grid area managed by an edge

provider that periodically runs a resource manager. The system is composed of m servers

{S1, . . . , Sm} that are located at the edge of the network (e.g., at base stations). Note that

in the rest of the chapter, we use Si and i interchangeably when referring to server Si. We

assume that the location of users may change from one time slot to another, where the

location of a user is specified by its coordinates in a two-dimensional grid of cells.

The user requests to offload an application with n components {C1, . . . , Cn}. In the

rest of the chapter, we use Cj and j interchangeably when referring to component Cj . The

processing requirement of component j is denoted by pj . This represents the amount of

component j’s load that needs to be processed. We do not impose any restrictions on the

communication between the components, any component can communicate with any other

component of the application (i.e., the graph modeling the application is not restricted).

We also assume that a server can communicate with any other server (e.g., via internet)

incurring different costs for different servers. Here, the objective is to find an assignment

of components to servers, such that the total placement cost of the application is minimized.

The total placement cost is composed of four types of costs:

22

(i) γij: the cost of running component j on server i. This cost is defined as the product

of the cost of processing a unit load at server i and the amount of load that needs to

be processed:

γij = ci · pj (3.1)

(ii) ρii′j: the cost of relocating component j from server i to server i′. In MEC, the

locations of users may change during the execution of their applications. Also, the

workload of the edge servers and other conditions of the network may vary from time

to time. Therefore, it may be required to change the location where the components

are running. The relocation cost is defined as follows:

ρii′j = lii′ · qj · r (3.2)

where lii′ is the distance between servers i and i′, qj is the size of component j that

would migrate, and r is the cost of transferring one unit of data over one unit of

distance. Since the managed area is a two-dimensional grid, the distance between

servers is the Manhattan distance, that is, if server i is located in cell (x, y) and

server i′ is located in cell (x′, y′), then the distance between the two servers is given

by lii′ = |x− x′|+ |y − y′|.

(iii) δij: the communication cost between component j (assigned to server i) and the

user. In each time slot, data communication between components and the user may

be required. This cost is defined as follows:

δij = di · hj · r (3.3)

where hj is the size of data that must be transferred between component j and the

user, and di is the distance between server i (that runs component j) and the user.

23

Table 3.1: Notation

Notation Description
m Number of servers.
n Number of components.
γij Cost of running component j on server i.
ci Cost of processing one unit of load on server i.
pj Processing requirement of component j.
ρii′j Cost of relocating component j from server i

to server i′.
lii′ Distance between servers i and i′.
qj Size of component j.
r Cost of transferring one unit of data over a unit

of distance.
δij Communication cost between component j (assigned

to server i) and the user.
di Distance between server i and the user.
hj Size of data that needs to be transferred between

component j and the user.
τii′j′ Communication cost between components j and j′

that are located on servers i and i′, respectively.
gjj′ Size of data that needs to be transferred between

components j and j′.
xij Binary variable associated with the assignment of

component j to server i.

The distance between the server and user is the Manhattan distance as defined in (ii)

above.

(iv) τii′jj′: the communication cost between components j and j′ that are located on

servers i and i′, respectively. Suppose that component j is located on server i and

component j′ is located on server i′. The communication cost between components

is defined as follows:

τii′jj′ = lii′ · gjj′ · r (3.4)

where gjj′ is the size of data that must be transferred between component j and

component j′.

Considering these, the total cost of the placement, which is the objective function of

24

MCAPP, is given by,

m∑
i=1

n∑
j=1

(γij + δij) · xij +
m∑
i=1

m∑
i′=1

n∑
j=1

ρii′j · x̄i′j · xij +

m∑
i=1

m∑
i′=1

n∑
j=1

n∑
j′=1

τii′jj′ · xij · xi′j′ (3.5)

The decision variables xij are defined as follows: xij = 1, if component j is assigned

to server i in the current time slot; and 0 otherwise. Furthermore, x̄i′j is not a decision

variable but a parameter denoting the assignment of component j in the previous time slot,

that is, x̄i′j = 1 if component j was assigned to server i′ in the previous time slot, and 0,

otherwise. Note that in any time slot, the assignment of components in the previous time

slot is known. Therefore, the objective function can be rewritten as,

m∑
i=1

n∑
j=1

(ωij · xij +
m∑
i′=1

n∑
j′=1

τii′jj′ · xij · xi′j′) (3.6)

Note that to make it easier to work with the objective function, we define ωij as ωij =

γij + δij + (
∑m

i′=1 ρii′j · x̄i′j). In the rest of the chapter, we call ωij the server-component

cost and τii′jj′ the inter-component cost. In Table 3.1, we present the notation that is used

throughout the chapter. We now formulate MCAPP as a Mixed Integer Non-Linear Pro-

gram (MINLP) and show that it is NP -hard. Then, we provide two heuristic algorithms to

solve it.

25

MCAPP-MINLP:

min
m∑
i=1

n∑
j=1

(ωij · xij +
m∑
i′=1

n∑
j′=1

τii′jj′ · xij · xi′j′) (3.7)

subject to:
n∑
j=1

xij ≤ 1 i = 1, . . . ,m (3.8)

m∑
i=1

xij = 1 j = 1, . . . , n (3.9)

xij ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n (3.10)

According to the above formulation, the objective function of MCAPP is to minimize

the total placement cost. The set of constraints (4.3) guarantees that each server is used by at

most one component. The set of constraints (4.4) ensures that each component is assigned

to exactly one server. The set of constraints (3.10) represents the integrality requirement

for the decision variables. The optimal solution obtained by solving MCAPP-MINLP will

be used in the experimental results section as a lower bound for the solution obtained by

our proposed algorithms.

3.2.1 Complexity of MCAPP

We show that the decision version (MCAPP-D) of MCAPP is NP -complete. This

implies that MCAPP is NP -hard. An instance of MCAPP-D is defined by: an application

graph, a resource graph, server-component cost, ωij , component-component cost, τii′jj′ ,

and a boundB ∈ R+. In the application graph, each vertex corresponds to a component and

the weight of the edge between every two verices j and j′ gives the total amount of inter-

component communication between the corresponding components (i.e., (gjj′+gj′j)·r). In

the resource graph, each vertex corresponds to a server and the weight of the edge between

every two vertices i and i′ gives the distance between the corresponding servers (i.e., lii′).

The decision question is whether there is an assignment of components to servers such that

26

the total cost of the assignment defined by Equation (3.6) does not exceed B.

Theorem 1. MCAPP-D is NP -complete.

Proof. We prove that MCAPP-D isNP -complete by showing that: (i) MCAPP-D belongs

toNP , and, (ii) the Traveling Salesman Problem (TSP), a well-knownNP -complete prob-

lem, can be reduced to this problem in polynomial time.

It is easy to show that MCAPP-D is in NP . We only need to guess an assignment from

components to servers, and then, compute the total cost of the assignment (using Equation

(3.6)) in polynomial time and check if it exceeds B or not.

For the second condition, we show that TSP is reduced to MCAPP-D in polynomial

time. Let us define an arbitrary instance of TSP with bound L on the length of a tour, graph

G = (V,E), where V is the set of cities, E is the set of edges, and the weights wii′ for each

edge (i, i′) (i.e., the distance between cities i and i′).

Now, we construct an instance of MCAPP-D, called P , based on G, such that the total

cost of the assignment is less than B, if and only if we can find a tour in G with the total

length less than L. Instance P has m servers and n components such that m = n =| V |.

We also set B = L. In this instance, the resource graph, G′, is the same as G and therefore,

the distance between each pair of servers is the same as the distance between each pair of

cities in G. For the application graph, we consider a ring graph in which the weight of

the edge between each pair of adjacent vertices is 1 and the weight of edge between non-

adjacent vertices is zero. Also, we assume that server-component computation costs, ωij ,

are zero.

We claim that G has a tour of total length less than L if and only if there is a solution

for P , where the total cost is less than B. Let us consider a tour in G with total length less

than L. We can consider this tour in G′ and assign components to this tour in the order that

they appear in the ring. Obviously, the total cost of this assignment is the same as the total

length of the tour, and therefore, is less than B.

Conversely, suppose that there is an assignment from components to servers in P with

27

total cost less than B. We assign these components to the corresponding cities in G and

define a tour based on the order of the component in the ring. Clearly, the total length of

this tour is the same as the total cost of the assignment, which does not exceed L.

3.3 Algorithms for MCAPP

In the previous section, we showed that MCAPP is NP -hard. Therefore, it is not pos-

sible to find an optimal solution for it in polynomial time, unless P = NP . Thus, we need

to design efficient algorithms that obtain near-optimal solutions to MCAPP in polynomial

time. For this purpose, we design two efficient heuristic algorithms MATCH-MCAPP and

G-MCAPP. MATCH-MCAPP is an algorithm based on matching and local search tech-

niques. This algorithm is very efficient for MEC systems with a relatively low number

of servers and components, and applications with less intensive communication among

components. In the absence of inter-component communications, MATCH-MCAPP ob-

tains the optimal allocation. G-MCAPP is a greedy algorithm that is more suitable for

MEC systems with a large number of servers and components, as well as for applications

with intensive communication among components. Thus, in practice they can be deployed

based on the types of instances that need to be solved. In the following, we describe the

algorithms and discuss their properties.

3.3.1 MATCH-MCAPP algorithm

We observe that the only factor that makes MCAPP NP -hard, is the existence of com-

munication among components. Without this type of communication, the problem can be

viewed as a matching problem (Figure 3.1a) which is solvable in polynomial time. In the

first time slot, the problem is to match components to servers, where each assignment of

component j to server i has a specific cost given by:

ωij = δij + γij (3.11)

The relocation cost is not considered in the first time slot, since ρikj = 0. In the next

28

C1 Cj Cn

S1 Si Sm

ωij = δij + γij

(a) The first time slot.

S1

C1

Sk

Cj

Sn

Cn

S1 Si Sm

ωij = δij + γij + ρkij

(b) Other time slots.

Figure 3.1: Matching components to servers.

time slots, the problem is to reassign components to servers taking users’ location dynam-

ics and other mentioned factors into account. In other words, the algorithm must decide

whether a component stays on the current server or migrates to another one (Figure 3.1).

The cost of assigning component j to server i must include the relocation cost and thus, it

is given by:

ωij = δij + γij + ρkij (3.12)

where k is the location of component j in the previous time slot.

Based on this fact, we design our first algorithm, called MATCH-MCAPP. This algo-

rithm operates in two phases. In the first phase, it determines the best matching between

components of the application and the servers without considering the communication re-

quirements among the components (i.e., τii′jj′ = 0). For this purpose, the algorithm uses

the Hungarian algorithm [95] which finds the minimum cost assignment of the components

to servers. In the second phase, the algorithm considers the communication requirements

among the components and uses a local search procedure to improve the solution.

The Hungarian algorithm is a polynomial time algorithm that solves the assignment

problem optimally. The algorithm has as input the weights ωij of the edges of the bipar-

tite graph in which one partition is composed of vertices corresponding to the servers, and

the other composed of vertices corresponding to the application components. The algo-

rithm finds a perfect matching that gives the minimum computation cost of components to

servers. Once the assignment is determined, the algorithm takes into account the commu-

29

Algorithm 1 MATCH-MCAPP Algorithm
{Executed every time slot }

Input: ω: server-component costs
τ : inter-component costs

1: y ← HUNGARIAN(ω)
2: cost←∑n

j=1(ωyjj +
∑n

j′=1 τyjyj′jj′)
3: toV isit← {1, . . . , n}
4: while toV isit 6= ∅ do
5: for each j ∈ toV isit do
6: Λj ←

∑n
j′=1 τyjyj′jj′

7: end for
8: b← argmaxj∈toV isit{Λj}
9: toV isit← toV isit \ {b}

10: for i = 1, . . . ,m do
11: y ← SWAP-COMPONENTS(yb, i)
12: new cost←∑n

j=1(ωyjj +
∑n

j′=1 τyjyj′jj′)
13: if new cost < cost then
14: cost← new cost
15: else
16: y ← SWAP-COMPONENTS(i, yb)
17: end if
18: end for
19: end while
20: for j = 1, . . . , n do
21: xyjj ← 1
22: end for
Output: (X, cost)

nication costs between the components, τii′jj′ and performs a local search procedure that

obtains the final solution to MCAPP.

MATCH-MCAPP is given in Algorithm 1. The algorithm is executed in each time

slot for each application. The input to the algorithm consists of the cost parameters, ωij ,

and τii′jj′ . To make it easy to describe the algorithm, we use the following notation: ω is the

array of server-component costs; and τ is the array of inter-component costs. The values

of these parameters are determined during the previous time slot and are used as input

to the algorithm in the current time slot. The output of the algorithm is the assignment

matrix X = {xij}, and the total cost of running the application on the assigned servers,

cost.

In the first phase, the algorithm determines the optimal assignment of the components

30

to servers by calling the function HUNGARIAN(ω) (Line 1). This function implements a

variant of the Hungarian algorithm and takes as input the cost ω and returns the assignment

as the vector y; where yj = i if component j is assigned to server i. Since the Hungarian

algorithm is well known we will not describe it here, but we refer the reader to Kuhn [95] .

Since the inter-component cost is not considered, the Hungarian algorithm is able to

determine the optimal assignment of components to servers. This optimal assignment is

not a solution for the MCAPP problem, it is an optimal assignment for the MCAPP with

zero costs for the communication between components (i.e., τii′jj′ = 0). Then, in the

second phase, MATCH-MCAPP performs a local search that takes into account the cost of

communication between components (Lines 2-15).

In the second phase, first, MATCH-MCAPP computes the cost of the current assign-

ment determined by the Hungarian algorithm and also adds the inter-component costs to

obtain the total cost (Line 2). Then, the algorithm defines a set, toV isit, and initializes it

with the set of all components (Line 3). Next, it computes the total inter-component cost,

Λj , of each component j in the toV isit set (Lines 5-6). Then, in line 7, it determines the

index of the bottleneck component, denoted by b. The bottleneck component is the com-

ponent that has the maximum value for the total inter-component cost, Λj . The algorithm

removes this component from the toV isit set (Line 8). Thus, this component will not be

selected as the bottleneck in the next iterations. After that, it executes a for loop (Lines

9-15) in which it tries to find a lower total cost assignment by swapping the component

that is currently placed on server i with the bottleneck component. This is done by calling

the function SWAP-COMPONENTS(yb, i). This function swaps the components that are

located at servers yb and i, that is, assigns the bottleneck component to i and the component

that is currently placed on server i to the server in which b resided. If there is no component

on server i, then b is assigned to i and the server on which b resided is marked as available.

The function outputs a new assignment vector y. After this, in line 11, MATCH-MCAPP

computes new cost, the total cost of the system under the new assignment. If there is an

31

improvement in the cost, it updates the total cost, cost, otherwise it restores the previous

assignment by calling the SWAP-COMPONENTS function (Lines 12-15). The algorithm

continues this procedure as long as there is an unvisited component. Then, it updates the

assignment matrix X based on the assignment vector y (Lines 16-17).

We now investigate the time complexity of MATCH-MCAPP. The time complexity

of the first phase, Hungarian algorithm, is O(max (m3, n3)). Since, we assume that the

number of servers is greater than the number of components, the time complexity of the

Hungarian algorithm is O(m3). The most computational expensive section of the second

phase consists of lines 4-15. The time complexity of the first part of this section (Lines 5-8)

is O(n2) while that of the second part (Lines 9-15) is O(mn2). Furthermore, since each

component is not chosen as the bottleneck more than once, these two parts are not executed

more than n times. Thus, the time complexity of the second phase is O(mn3). Therefore,

the time complexity of MATCH-MCAPP is O(m3 +mn3).

3.3.2 G-MCAPP algorithm

G-MCAPP is a greedy algorithm that finds the assignment of components to servers it-

eratively. To determine the assignment, the algorithm considers both the server-component

and the inter-component costs simultaneously. The idea of G-MCAPP is to assign a com-

ponent to a server in each iteration in such a way that the minimum cost is added to the

total cost. For this purpose, the algorithm employs the assignment cost variable, σij .

In the first iteration, since the assignment of none of the components has been deter-

mined yet, G-MCAPP only decides based on the server-component cost (i.e., σij = ωij).

The algorithm selects a server-component pair (i∗, j∗) that has the minimum value of σi∗j∗ .

Then, for each unassigned server-component pair, (i, j), the algorithm updates the assign-

ment cost by adding the inter-component cost between the previously selected component

and the current component (i.e., σij = ωij + τii∗jj∗ + τi∗ij∗j). In the next iterations, G-

MCAPP decides the assignment based on the updated costs and continues the procedure

of selecting the server-component pair with the minimum assignment cost.

32

Algorithm 2 G-MCAPP Algorithm
{Executed every time slot }

Input: ω: server-component costs
τ : inter-component costs

1: S ← ∅
2: for i = 1, . . . ,m do
3: for j = 1, . . . , n do
4: σij ← ωij
5: S ← S ∪ {(i, j)}
6: end for
7: end for
8: while (S 6= ∅) do
9: (i∗, j∗)← argmin(i,j)∈S{σij}

10: xi∗j∗ ← 1
11: for each (i, j) ∈ S do
12: if i = i∗ or j = j∗ then
13: S ← S \ {(i, j)}
14: end if
15: end for
16: for each (i, j) ∈ S do
17: σij ← σij + τii∗jj∗ + τi∗ij∗j
18: end for
19: end while
20: cost←∑m

i=1

∑n
j=1 ωij · xij + (

∑m
i′=1

∑n
j′=1 xij · xi′j′τii′jj′)

Output: (X, cost)

G-MCAPP is given in Algorithm 2. The input to the algorithm consists of: ω, the

server-component cost matrix; and τ , the array of inter-component costs. In this algorithm,

S is the set of all possible pairs of servers and components. For each pair (i, j), variable σij

is initialized to ωij (Lines 2-5). Then, iteratively, the algorithm finds the assignment of

each component. First, the algorithm selects a server-component pair (i∗, j∗) that has the

minimum server-component cost and assigns component j∗ to server i∗ (Lines 7-8). Since

each component is assigned to exactly one server and each server is used by at most one

component, the algorithm removes all pairs that contain i∗ or j∗ from set S (Lines 9-11).

Then, for each unassigned component j and server i, the algorithm updates the assignment

cost by considering the inter-component communication between the component j∗ and

component j (i.e., σij ← σij+τii∗jj∗+τi∗ij∗j) (Lines 12-13). Therefore, in the next iteration

of the algorithm, the assignment costs are updated and the inter-component communication

33

S1

C2

S2

C1

S3

C3

User

4

2
5

3

6

5

(a) The placement of
components on servers
in the previous slot.

S1

C2

S2

C3

S3

C1

User

10

3
3

3

6

5

(b) The placement of
components obtained by
MATCH-MCAPP.

S1

C2

S2

C1

S3

C3

User

10

3
3

3

6

5

(c) The placement of
components obtained by
G-MCAPP.

Figure 3.2: Example.

costs are considered. The algorithm continues this procedure until all the components

are assigned. Finally, it determines the total cost based on the assignment of components

(Line 14).

Now, we investigate the time complexity of G-MCAPP. The algorithm executes n iter-

ations. The most time consuming part of each iteration consists of computing the minimum

pair and updating the cost of the remaining pairs. In the first iteration, since there are m · n

pairs, the time complexity of these operations is O(mn). In the next iteration, the num-

ber of pairs reduces to (m − 1)(n − 1). Generally, in the i-th iteration, the number of

pairs is O((m − i + 1)(n − i + 1)). Therefore, the time complexity of G-MCAPP is

O(
∑n

i=1(m− i+ 1)(n− i+ 1)) = O(mn2).

3.4 An illustrative example

We provide a numerical example to show how our algorithms work. We consider an

edge system consisting of three servers S = {S1, S2, S3}, and an application with three

components C = {C1, C2, C3}. Figure 3.2a shows the user-server and server-server dis-

tances (i.e., di and lii′) in the previous time slot. In this figure, the weights on solid line

edges are the server-server distances and the weights on the dashed line edges are the user-

server distances. We assume that in the previous time slot, components C1, C2, and C3

have been assigned to servers S2, S1, and S3, respectively.

In the next time slot, as the user’s location changes, the user-server distances change

34

too (See Figure 3.2b). Therefore, the algorithms may need to change the assignment. Fig-

ure 3.2b and Figure 3.2c show the new assignment of the components in the next slot

obtained by MATCH-MCAPP and G-MCAPP, respectively. In these figures, we observe

that MATCH-MCAPP changes the location of components C1 and C2 while G-MCAPP

decides not to change the location of any component. In the rest of this section, we show

how these two algorithms decide on their assignment. The values of the parameters are

provided in Table 3.2. Based on these parameters, we obtain ωij given in Table 3.3.

3.4.1 MATCH-MCAPP

In the first phase of MATCH-MCAPP, the Hungarian algorithm is employed to deter-

mine the placement, which is C1 to S1, C2 to S2, and C3 to S3 (Figure 3.3a). According to

Equation (3.7), the total cost of this assignment is 757. In the second phase of MATCH-

MCAPP, the local search, takes the inter-component communication (τii′jj′) into account.

In each iteration of the local search, the total inter-communication cost, Λj , of each com-

Table 3.2: Example: The values of the cost parameters .

Parameter Value
r 1
< g12, g13 > < 12, 15 >
< g21, g23 > < 13, 20 >
< g31, g32 > < 20, 30 >
< h1, h2, h3 > < 5, 10, 10 >
< q1, q2, q3 > < 4, 2, 2 >
< p1, p2, p3 > < 2, 3, 2 >
< c1, c2, c3 > < 5, 10, 12 >

(r, data transmission cost rate; gjj′ , size of data transferred between components j and j′; hj , size of data
transferred between user and component j; pj , processing requirement of component j; ci, cost of
processing of one unit load on server i)

Table 3.3: Example: The values of the server-component costs, ωij .

i/j 1 2 3
1 72 115 122
2 32 66 62
3 51 76 54

35

C1 C2 C3

S1 S2 S3

X

(a)

C1 C2 C3

S1 S2 S3

X

(b)

C1 C2 C3

S1 S2 S3

×

(c)

C1 C2 C3

S1 S2 S3

×

(d)

C1 C2 C3

S1 S2 S3

×

(e)

C1 C2 C3

S1 S2 S3

X

(f)

C1 C2 C3

S1 S2 S3

×

(g)

Figure 3.3: Example: Second phase (local search) of MATCH-MCAPP on an instance with
three components and three servers.

ponent j is computed and the component with the maximum value of Λj is selected as

the bottleneck. In the first iteration, the total communication cost of each component is

computed: Λ1 = 285, Λ2 = 325, Λ3 = 460. Therefore, component C3 is selected as the

bottleneck. In the figures, the bottleneck component is represented by a solid black square.

Then, the algorithm swaps the bottleneck with the component in the next server if it leads

to a reduction in the total cost. In this case, the algorithm assigns C3 to S1 and C1 to S3,

because it reduces the total cost from 757 to 714 (Figure 3.3b). In the next iteration, the

36

algorithm skips swapping the bottleneck with component C2 because the total cost of this

possible assignment is 758 which is greater than the total cost obtained from the previ-

ous assignment. Since all possible swaps for the current bottleneck have been tried, the

algorithm starts the next iteration to select another bottleneck. In the next iteration, the

total inter-component communication costs of the remaining components are calculated:

Λ1 = 335, Λ2 = 275. Therefore, C1 is selected as the bottleneck. The algorithm skips

swapping server S3 with S1 since it will not reduce the total cost (Figure 3.3d). In the next

step, the algorithm again skips swapping S3 and S2, because it will not reduce the total cost

(Figure 3.3e).

In the next iteration of the algorithm, component C2 is selected as the bottleneck. The

algorithm swaps S2 with S1 because it reduces the total cost from 714 to 703 (Figure 3.3f).

The algorithm skips swapping S1 with S3 because it will not reduce the total cost (Fig 3.3g)

and it stops because all the components have been visited. Therefore, the total placement

cost obtained by MATCH-MCAPP is 703.

3.4.2 G-MCAPP

Now, we show how G-MCAPP determines the placement of the components. The al-

gorithm initializes the assignment cost between each pair of components and servers, σij ,

based on the values of the server-component costs (i.e., σij = ωij). In each iteration, the

algorithm selects a pair of server i∗ and component j∗ for which the value of σi∗j∗ is min-

imum and assigns component j∗ to server i∗. Then, it updates the value of σij for the

unassinged pairs of servers and components. Table 3.4 shows the values of the assignment

costs in each iteration of G-MCAPP. The algorithm selects (C1, S2) with the cost of 32 as

the pair with the minimum server-component cost and assigns C1 to S2. Then, it updates

the assignment cost of each remaining pair (i, j) by adding the inter-component cost be-

tween C1 and component Cj (i.e., σij = ωij + τi2j1 + τ2i1j). Therefore, for example the

cost of assigning component C2 to server S1 is updated to σ12 = ω12 + τ1221 + τ2112. The

values of the assignment costs obtained in the second iteration of the algorithm are given

37

Table 3.4: Example: Assignment costs, σij , in each iteration of G-MCAPP

iteration σ11 σ12 σ13 σ21 σ22 σ23 σ31 σ32 σ33

1 72 115 122 32 66 62 51 76 54
2 − 190 227− − − − 201 189
3 − 490− − − − − − −

in the second row of Table 3.4. In this table, the pairs that are not allowed to be selected

(due to the Constraints (4.3) and (4.4)) are marked with “− ”.

In the second iteration, the pair (C3, S3) with a cost of 189 is selected as the pair with

the minimum cost and therefore, C3 is assigned to S3. Then, the assignment costs of the

remaining pairs are updated (i.e., σij = ωij+τi3j3+τ3i3j). In the last iteration, the algorithm

assigns component C2 to server S1. Therefore, based on Equation (3.7), the total placement

cost obtained by G-MCAPP is 765.

Comparing the results obtained by the two algorithms, the total cost obtained by G-

MCAPP is 8.8% higher than that obtained by MATCH-MCAPP. In Section 3.5, we show

that the quality of solutions obtained by MATCH-MCAPP is better than G-MCAPP for

small-size problem instances, specifically, when the amount of inter-component communi-

cation is not high.

3.5 Experimental results

We perform extensive experiments in order to investigate the properties of the proposed

algorithms. We compare the performance of the algorithms against that of the optimal

solution obtained by solving MCAPP-MINLP and that of another placement algorithm. In

the following, we describe the experimental setup and analyze the experimental results.

3.5.1 Experimental setup

Because the development of MEC is still in the early stages, there are no MEC work-

load traces that are publicly available. Therefore, for our experiments, we have to rely on

synthetically generated instances for the MCAPP problem. In the following, we describe

how we generate the problem instances that drive our simulation experiments and describe

38

the experimental setup.

We consider a time slotted system in which the locations of users in the network may

change from one time slot to another, but do not change during one time slot. To evaluate

the efficiency of the algorithms, we consider two different mobility models for the users:

(i) Trace-Driven (TD), based on real-world mobility data [93], and (ii) Random Walk (RW)

model [94].

For the trace-driven experiments, we use the CRAWDAD data set containing mobility

traces of taxi cabs in San Francisco, CA [93]. The data set contains the GPS coordinates

of about 500 taxi cabs collected over 30 days. We randomly choose the traces of 150 taxi

cabs whose locations are updated every 10 seconds and use them as mobility traces for the

users in our experiments. We also consider 200 edge servers that are co-located with 200

selected cell towers in the San Francisco area. The locations of these towers are obtained

from antennasearch.com. In our experiments we do not consider towers with height less

than 100 feet. Figure 3.4 shows the distribution of towers in San Francisco and the most

frequent paths that are used by the selected 150 taxis in the area. For the trace-driven

experiments, we set the length of a time slot to 5 minutes. Every experiment is repeated ten

times and each time, we select a taxi randomly from the data set and run the experiments.

For the second sets of experiments, those using the random walk mobility model, we

assume that the mobility of users is based on the random walk model in a two-dimensional

space. The users and servers are located within a two-dimensional grid of 50 × 50 cells.

In fact, we consider the area of the San Francisco taxi traces as a 50 × 50 grid. Initially,

a user can be in any cell of the grid network and its location is drawn randomly from a

uniform distribution over the locations of the grid. In our setting, in every new time slot, a

user can stay in its place or move into any of neighboring cells with equal probability. The

servers are located within the same two-dimensional grid network and the coordinates of

their positions are the same as those of servers we considered in the experiments with the

trace-driven data set. The distance between servers and users is the Manhattan distance (as

39

Figure 3.4: Distribution of the edge servers (blue squares) and the frequent paths of the
users (red dots)).

(Image generated using GPS Visualizer [96]).

defined in Section 3.2).

We generate several problem instances with different values for n, the number of com-

ponents of the application, and m, the number of servers in the network. The number of

components for each application ranges from 2 to 100, while the number of servers ranges

from 10 to 200. The reason for choosing these ranges is that in practice the number of

components of an average application rarely exceeds 100 and most likely is on the lower

part of the range considered here. Also, we assume that the number of time slots needed

to run an application is 10. To generate the cost parameters defined in Section 3.2 we take

into account the type of applications we consider.

Since the determinant factors in the performance of any algorithm for solving MCAPP

are the server-component costs and the inter-component costs, we decided to generate

the instances according to the value of a metric called Inter-component cost to Server-

component cost Ratio (ISR). This metric is defined as the ratio of the average inter-

component cost of each component (i.e.,
∑n

j=1

∑n
j′=1 l̄·gjj′ ·r
n

) and the average server-component

cost per assignment (i.e.,
∑m

i=1

∑n
j=1 ωij

n·m), where, l̄ is the average distance between servers.

Based on the value of ISR, we define three classes of applications with low, medium, and

40

Table 3.5: Simulation parameters

Parameter Description Distribution
ci Cost of processing one unit N(µi, 0.2µi),

of load on server i. µi ∼ U [1, 10]
pj Processing requirement of N(µj , 0.2µj),

component j. µj ∼ U [0, 10]
r Data transmission cost. U [0, 1]
qj Size of component j. U [10, 40]
hj Size of data transferred U [1, 20]

between user and server j.
Size of data transferred low :U [1, 10]

gjj′ between components j medium: U [10, 100]
and j′ high: U [1000, 10000]

high ISR.

Table 3.5 shows the type of distributions used to generate the parameters characterizing

the problem instances used in our simulation experiments. We consider different ranges

for the distribution for three classes of applications. All the cost parameters for these three

types of applications are the same, except for parameter gjj′ . This parameter indicates

the inter-component communication intensiveness of the application. In Table 3.5, we

denote byU [x, y], the uniform distribution within interval [x, y], and byN(µ, v), the normal

distribution with mean µ and variance v. We assume that the cost of processing one unit of

load on the servers is within the same range for all servers and does not vary significantly.

Therefore, we use the normal distribution for the cost of processing. Similarly, we use the

normal distribution for the processing requirement of the components.

We compare the performance of our algorithms, MATCH-MCAPP and G-MCAPP,

with that of another algorithm called MATCH and with that of the optimal solution ob-

tained by solving MCAPP-MINLP. The MATCH algorithm implements a variant of the

Hungarian algorithm [95] and does not take into account the communication among com-

ponents when making the placement decisions. We compare with this algorithm in order to

investigate the improvement in the quality of the solution due to considering the communi-

cation among components in the local search phase of MATCH-MCAPP.

For each type of instance, we determine the number of runs based on the observed

41

variance of the results [97]. We observe that the standard deviation of the results for ten

random instances is low. Thus, we execute MATCH-MCAPP, G-MCAPP, and MATCH

algorithms for ten random instances (all the plots presented in the next section show the

average values). The performance of the algorithms is evaluated by computing the per-

formance ratio, PR, which is defined as the ratio of the value V ∗ of the optimal solution

for MCAPP-MINLP, and V , the value of the solution obtained by a given algorithm, (i.e.,

PR = V ∗

V
). To obtain the optimal solution, we transform MCAPP-MINLP into an equiv-

alent mixed integer linear program (called MCAPP-MILP) and solve it with the CPLEX

solver. The transformation is performed by replacing xij ·xi′j′ in the objective with a binary

variable yiji′j′ , and adding the following constraints to the program,

xij + xi′j′ − 1 ≤ yiji′j′ ∀i, j, i′, j′ (3.13)

yiji′j′ ∈ {0, 1} ∀i, j, i′, j′ (3.14)

These constraints guarantee that binary variable yiji′j′ is 1, if both variables xij and xi′j′

are 1; and 0 otherwise.

The MATCH-MCAPP, G-MCAPP, and MATCH algorithms are implemented in C++

and the experiments are conducted on an Intel 1.6GHz Core i5 with 8 GB RAM system.

For solving MCAPP-MILP we use the CPLEX 12 solver provided by IBM ILOG CPLEX

optimization studio for academics initiative [98].

3.5.2 Analysis of results

In this section, we study the total placement cost of applications and compare the perfor-

mance and the scalability of the algorithms for different types of applications with varying

number of components and servers.

Performance with respect to the number of servers. We investigate the effect of the

42

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

10 20 40 60 80 100

E
x
e

c
u

ti
o

n
 t

im
e

 (
µ

s
e

c
o

n
d

)

of servers

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)

G-MCAPP(RW)
CPLEX(TD)

CPLEX(RW)

(a) Low

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

10 20 40 60 80 100

E
x
e

c
u

ti
o

n
 t

im
e

 (
µ

s
e

c
o

n
d

)

of servers

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)

G-MCAPP(RW)
CPLEX(TD)

CPLEX(RW)

(b) Medium

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

10 20 40 60 80 100

E
x
e

c
u

ti
o

n
 t

im
e

 (
µ

s
e

c
o

n
d

)

of servers

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)

G-MCAPP(RW)
CPLEX(TD)

CPLEX(RW)

(c) High

Figure 3.5: Execution time (microseconds) vs. number of servers for different level of
inter-component communications.

number of servers on the performance of MATCH-MCAPP and G-MCAPP algorithms

considering the two mobility models. We characterize the performance of the algorithms

using two main metrics, the performance ratio, and the execution time on a set of instances

that runs the application over 10 time slots (T = 10) and consists of n = 4 components. We

chose this type of instances in order to be able to solve them optimally using CPLEX and

compare the performance of our algorithms with that of the optimal solution. We vary the

number of servers from 10 to 100. These servers are chosen randomly from the data set. We

select three types of instances for these experiments, instances with high inter-component

costs, instances with medium inter-component costs, instances with low inter-component

costs, and perform a detailed analysis of the results.

In Figure 3.5, we plot the average execution time per time slot obtained by MATCH-

MCAPP, G-MCAPP, and CPLEX under both mobility models and on those instances

43

for different values of m using a logarithmic scale. In the plots, we denote by MATCH-

MCAPP(TD) the cases in which MATCH-MCAPP is executed on instances generated us-

ing the trace-driven data sets, and by MATCH-MCAPP(RW), the cases in which MATCH-

MCAPP is executed on the instances generated using the random-walk mobility model.

We use a similar notation in the cases of G-MCAPP and CPLEX.

The execution time of CPLEX is several orders of magnitude higher than the execution

times of both MATCH-MCAPP and G-MCAPP algorithms for all three types of instances.

The execution time of MATCH-MCAPP and G-MCAPP, is under 1 millisecond for prob-

lem instances with small number of servers (m < 40), making them very suitable for

deployment in real MEC systems.

We observe an increase of the execution time of MATCH-MCAPP with the increase in

the number of servers. This is because of the cubic growth in terms ofm of the running time

of the algorithm. For example, in the case of instances with low inter-component commu-

nication, with m = 20 under the trace-driven model, the average execution time obtained

by MATCH-MCAPP is around 0.08 milliseconds, while form = 80, the average execution

time is around 15 milliseconds. However, this execution time is reasonable because it is

much less than the duration of a slot. Therefore, it will not make our algorithm a significant

contributor to the overhead of placing the application components on edge servers.

Generally, the G-MCAPP algorithm obtains a lower execution time than MATCH-

MCAPP. In all instances, the execution time obtained by G-MCAPP is under 1 millisec-

ond. Also, we observe that in most cases, the total execution time of MATCH-MCAPP,

G-MCAPP, and CPLEX under trace-driven data set is slightly greater than that under the

random walk model. In fact, under the random walk model, a user changes his/her di-

rection with the same probability in each time slot. Therefore, his/her distance from the

servers may not change as significantly as the trace-driven case in which the user may only

follow one direction for multiple consecutive time slots. Therefore, under the random walk

model, the execution time of the algorithms is lower than that of trace-driven case, because

44

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 20 40 60 80 100

P
e

rf
o

rm
a

n
c
e

 r
a

ti
o

of servers

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)
G-MCAPP(RW)

(a) Low

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 20 40 60 80 100

P
e

rf
o

rm
a

n
c
e

 r
a

ti
o

of servers

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)
G-MCAPP(RW)

(b) Medium

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 20 40 60 80 100

P
e

rf
o

rm
a

n
c
e

 r
a

ti
o

of servers

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)
G-MCAPP(RW)

(c) High

Figure 3.6: Performance ratio vs. number of servers for different level of inter-component
communications.

the algorithms may not need to relocate components in each time slot.

In Figure 3.6, we plot the performance ratio obtained by MATCH-MCAPP and G-

MCAPP. In the case of low inter-component communication instances (Figure 3.6a), the

performance ratio obtained by MATCH-MCAPP is very close to 1, thus this algorithm

obtains optimal solutions or solutions that are very close to the optimal. The reason is

that the inter-component communication is low, and therefore, the solution obtained by the

Hungarian algorithm (inside the MATCH-MCAPP) is very close to the optimal solution.

For those instances, G-MCAPP has a lower performance ratio. However, the performance

ratio obtained by this algorithm is higher than 0.87 in all cases. Furthermore, by increas-

ing the number of servers, the quality of solutions obtained by G-MCAPP improves. The

reason is that by increasing the number of servers, a higher percentage of servers are avail-

able for components at each iteration of G-MCAPP. Therefore, G-MCAPP explores more

45

alternative placements and can make better decisions.

As the amount of inter-component communication increases, the performance ratios

of MATCH-MCAPP and G-MCAPP increase (Figure 3.6b and 3.6c). We observe that G-

MCAPP has a better performance compared to MATCH-MCAPP for higher inter-component

communication cases. That means that G-MCAPP is able to obtain solutions that are

closer to the optimal solution than those obtained by MATCH-MCAPP. As an example, for

m = 40, for high inter-component communication case, the performance ratio of MATCH-

MCAPP is 0.48, while that of G-MCAPP is 0.63. Also, we observe that the performance

ratio decreases with the number of servers. Therefore, MATCH-MCAPP and G-MCAPP

exhibit completely different behaviors compared to the low inter-component communica-

tion cases where the performance ratio increases by the increase of the number of servers.

In fact, when the amount of inter-component communication is relatively high, each inef-

ficient greedy decision can incur a significant amount of cost to the system. Thus, when

the number of servers increases, there is a higher risk for local search/ greedy algorithms

to make less efficient decisions.

Another important observation from Figure 3.6b and 3.6c is that the performance ra-

tio obtained by MATCH-MCAPP decreases faster than the performance ratio obtained by

G-MCAPP. Also, from Figure 3.6, we observe that the performance of MATCH-MCAPP

and G-MCAPP under both trace-driven mobility data set and random walk model are con-

sistent. In other words, the performance ratios obtained by the algorithms do not vary

significantly under the considered mobility models. One reason for this consistency is the

fact that our algorithms are relatively robust to the mobility behavior of users.

Performance with respect to the number of components. Next, we analyze the perfor-

mance of MATCH-MCAPP and G-MCAPP by varying the number of components. We

consider a set of instances that require running the application for 10 time slots (T = 10)

and consist of 20 servers (we randomly choose 20 towers from the data set). We chose this

type of instances in order to be able to solve them optimally using CPLEX and compare

46

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

2 5 10 15 20

E
x
e

c
u

ti
o

n
 t

im
e

 (
µ

s
e

c
o

n
d

)

of components

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)

G-MCAPP(RW)
CPLEX(TD)

CPLEX(RW)

(a) Low

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

2 5 10 15 20

E
x
e

c
u

ti
o

n
 t

im
e

 (
µ

s
e

c
o

n
d

)

of components

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)

G-MCAPP(RW)
CPLEX(TD)

CPLEX(RW)

(b) Medium

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

2 5 10 15 20

E
x
e

c
u

ti
o

n
 t

im
e

 (
µ

s
e

c
o

n
d

)

of components

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)

G-MCAPP(RW)
CPLEX(TD)

CPLEX(RW)

(c) High

Figure 3.7: Execution time (microseconds) vs. number of components for different level
of inter-component communications.
(CPLEX was not able to determine the solutions for instances with 10, 15, and 20 components in feasible
time, and thus, there are no bars in the plots for those cases)

the performance of our algorithms with that of the optimal solution. We vary the number of

components from 2 to 20. CPLEX was not able to solve some of the instances in feasible

time, and thus, we were not able to determine the performance ratios for MATCH-MCAPP

and G-MCAPP algorithms. In those cases we do not display the bars in the corresponding

plots.

In Figure 3.7, we plot the average execution time per time slot obtained by MATCH-

MCAPP, G-MCAPP and CPLEX. The average execution time of the algorithms increases

with the number of components. For example for instances with low inter-component

communication and n = 2, the average execution time of MATCH-MCAPP is about 0.01

milliseconds under the trace-driven model, while for n = 20, it is about 0.1 milliseconds.

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 5 10 15 20

P
e

rf
o

rm
a

n
c
e

 r
a

ti
o

of components

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)
G-MCAPP(RW)

(a) Low

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 5 10 15 20

P
e

rf
o

rm
a

n
c
e

 r
a

ti
o

of components

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)
G-MCAPP(RW)

(b) Medium

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 5 10 15 20

P
e

rf
o

rm
a

n
c
e

 r
a

ti
o

of components

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)
G-MCAPP(RW)

(c) High

Figure 3.8: Performance ratio vs. number of component for different level of inter-
component communications.
(CPLEX was not able to determine the solutions for instances with 10, 15, and 20 components in feasible
time, and thus, there are no bars in the plots for those cases)

Also, we observe that the execution time of G-MCAPP is much lower than the execution

time of MATCH-MCAPP.

In Figure 3.8, we plot the performance ratio obtained by MATCH-MCAPP and G-

MCAPP algorithms under the both mobility models. We observe that for instances with

low or medium inter-component communication (Figure 3.8a, Figure 3.8b), MATCH-MCAPP

outperforms G-MCAPP. Also, the performance ratio obtained by MATCH-MCAPP is

very close to 1. For these instances, the performance ratio obtained by G-MCAPP de-

creases with the number of components. The reason is that, as the number of components

increases, a smaller number of servers are available after each iteration of G-MCAPP.

Therefore, the algorithm explores a smaller number of possible placements for each com-

48

 500000

 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

0.12 8 24 42 84 674

E
x
e

c
u

ti
o

n
 t

im
e

 (
µ

s
e

c
o

n
d

)

ISR

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)
G-MCAPP(RW)

(a) Average execution time (microseconds)
per time slot.

 0

 1

 2

 3

 4

 5

0.12 8 24 42 84 674

P
e

rf
o

rm
a

n
c
e

 r
a

ti
o

ISR

MATCH-MCAPP(TD)
MATCH-MCAPP(RW)

G-MCAPP(TD)
G-MCAPP(RW)

(b) Performance ratio with respect to
MATCH.

Figure 3.9: The effect of ISR (large-scale instances).

ponent.

Large-scale problem instances. We investigate the performance of the proposed algo-

rithms for large-scale problem instances under the two mobility models. We consider large

instances with a fixed number of components and servers (n = 100, m = 200) and fixed

number of time slots (T = 10), and several values for ISR, ranging from 0.12 to 674.

These instances with large number of components and servers are not expected to be en-

countered in practice, but we still consider them here to investigate the scalability of the

algorithms. Since CPLEX is not feasible to use for solving such large instances, we will not

compare the performance of our algorithms against the performance of the optimal solution

obtained by CPLEX. Instead, we will compare the performance of our algorithm against

that of MATCH (described in Section 3.5.1). In order to do this, we redefine the perfor-

mance ratio as the ratio of the total cost obtained by MATCH and the total cost obtained by

our proposed algorithms.

In Figure 3.9a, we plot the average execution time per time slot obtained by MATCH-

MCAPP and G-MCAPP. As expected, the average execution time per time slot of MATCH-

MCAPP and G-MCAPP is not very sensitive to the value of ISR. The execution time of

MATCH-MCAPP increases slowly with ISR. This is because more swaps may be per-

formed in the local search when the inter-component communication increases. However,

49

we observe that the execution time of G-MCAPP is not sensitive to the value of ISR. This

is because the number of operations in the algorithm does not depend on the value of ISR.

We also observe that, for large scale instances, the execution time of G-MCAPP is about

two times greater than the execution time of MATCH-MCAPP; but it is still in a reasonable

range compared to the duration of each time slot.

In Figure 3.9b, we plot the performance ratio of MATCH-MCAPP and G-MCAPP

under the two mobility models. We observe that both algorithms obtain better solutions

compared to the MATCH algorithm. MATCH-MCAPP obtains solutions with a total cost

around 45% lower than MATCH for most cases. For small values of ISR, since there is

almost no communication among the components, MATCH-MCAPP behaves similarly to

the Hungarian algorithm, that is, the local search step is not actually able to improve the

solution beyond that obtained by matching. By increasing the value of ISR, the perfor-

mance ratio of MATCH-MCAPP increases. This means that, the local search improves the

solution obtained by the Hungarian algorithm. Furthermore, we observe that the perfor-

mance of G-MCAPP is much better than MATCH-MCAPP. In most cases, the total cost

obtained by G-MCAPP is around 60% less than total cost obtained by MATCH algorithm.

This means that G-MCAPP obtains a better performance for large scale problem instances

while it has a reasonable execution time.

According to the experimental results, MATCH-MCAPP and G-MCAPP obtain solu-

tions that are very close to the optimal and require very low execution time per slot for

reasonably large instances. For the average size instances, the ones we expect to encounter

in practice, the proposed algorithms perform very well with respect to both the quality

of the solutions and the execution time per time slot. Also, the performance of both al-

gorithms is consistent under both the trace-driven mobility data set and the random walk

model which indicates that the proposed algorithms are relatively robust to the mobility be-

havior of the users. MATCH-MCAPP is more suitable for MEC systems with a relatively

low number of servers and components, and applications with less intensive communica-

50

tion among components. On the other hand, G-MCAPP is more suitable for MEC systems

with a large number of servers and components, as well as for applications with intensive

communication among components.

3.6 Conclusion

We addressed the problem of placement of multi-component applications in MEC sys-

tems. We formulated the problem as a Mixed Integer Non-Linear Program (MINLP) and

developed two efficient algorithms for solving it. We performed extensive experiments to

investigate the performance of the proposed algorithms. The results of these experiments

indicated that the proposed algorithms obtain very good performance and require very low

execution time, making them very suitable for deployment on MEC systems.

51

CHAPTER 4

MECHANISMS FOR RESOURCE ALLOCATION AND PRICING IN MOBILE

EDGE COMPUTING SYSTEMS

4.1 Introduction

In Mobile Cloud Computing (MCC), centralized cloud servers are employed as power-

ful resources for executing computational tasks of mobile applications [2]. These systems

have been able to mitigate some of the existing limitations and challenges in mobile devices

such as storage capacity, computation power, and battery life. The long distance between

the centralized servers and end users results in high response latency which makes MCC

systems unsuitable for many applications with low latency requirements. In recent years,

Mobile Edge Computing (MEC) has been introduced to mitigate the existing challenges

in MCC. In a MEC system, data, computation, and storage are migrated from mobile de-

vices to the servers located at the edge of the network [99]. Despite the fact that MEC

systems are in their early stages of development, a wide range of applications is expected

to benefit from this technology. Autonomous driving [23, 100], healthcare [101, 102], and

entertainment are just few examples of such applications. Compared to cloud data centers,

edge systems have much more limited resources leading to increased competition among

users who desire to acquire high quality services. Due to this challenge, the efficiency of

MEC systems depends heavily on the utilized resource allocation mechanisms. Any inef-

ficiencies in resource allocation might lead to low Quality of Service (QoS), high energy

consumption, and increased operating costs.

Despite all the efforts focused on designing efficient resource allocation algorithms in

MEC systems, monetization of services, that is, developing incentive schemes for mo-

bile users and edge providers, is still a significant challenge in the development of MEC

systems. A report by National Science Foundation (NSF) on grand challenges in edge

computing [6], identified incentives and monetization as one of the five grand challenges in

the development of edge computing systems. Decentralized distribution of MEC servers,

52

heterogeneity of resource requirements, and the competition between users to acquire high

quality services make the resource allocation and pricing in MEC systems a challenging

problem. Many auction mechanisms developed for MCC systems are not directly applica-

ble to MEC settings. In MEC systems, resources are distributed over multiple levels, users

typically request bundles of multiple types of resources, and they have different valuations

for the services provided from different network levels (i.e., cloud and edge).

In this chapter, we address the monetization challenge in MEC systems by developing

auction-based mechanisms for resource allocation and pricing. We consider a telecom-

centric MEC system, where the edge resources are located at the first level of aggregation

in the network. Such type of telecom-centric MEC architecture received considerable atten-

tion in the literature and significant support from industry and ETSI [90]. Deploying servers

at the edge of the network in a telecom-centric MEC system is expensive, and therefore,

a limited number of such servers are made available to mobile users. The scarcity of re-

sources at the edge of the network creates a competitive environment for the mobile users,

and therefore, there is an urgent need to develop incentive-based resource allocation and

pricing mechanisms for MEC.

4.1.1 Our contributions

We propose two resource allocation and pricing mechanisms for MEC systems with

heterogeneous servers and resources of different types. We consider dynamic provision-

ing of computing resources. Depending on the user demand, the computing resources are

provisioned as Virtual Machines (VMs) instances. First, we develop a greedy resource al-

location and pricing mechanism for edge computing systems. The mechanism combines

features from both position [103] and combinatorial auctions [104] and handles heteroge-

neous resource requests from mobile users and heterogeneous types of resources. It deter-

mines envy-free allocations (i.e., allocations in which no user can improve her utility by

exchanging bids with any user with the same request for resources) and prices that lead to

close to optimal social welfare for the users. In addition, the mechanism requires very small

53

execution time even for very large problem instances with hundreds of users. The second

algorithm, is a linear programming (LP) based approximation mechanism that does not

guarantee envy-freeness, but it provides a solution that is guaranteed to be within a given

distance from the optimal solution. We evaluate the performance of the proposed mecha-

nisms through an extensive experimental analysis. For small-size instances, we compare

the solutions obtained by our proposed mechanisms with the optimal solutions obtained

by solving the Mixed-Integer Linear Programming (MILP) model of the problem using

the CPLEX software. Since for large-size instances obtaining the optimal solution in a

reasonable amount of time is not feasible, we compare the performance of the proposed

mechanisms against each other. We also investigate the impact of dynamic provisioning by

comparing the performance of the system under both static and dynamic provisioning.

4.1.2 Organization

The rest of the chapter is organized as follows. In Section 4.2, we formulate the problem

of allocation and pricing. In Section 4.3, we introduce the proposed envy-free allocation

and pricing mechanism. In Section 4.4, we introduce the proposed approximation mech-

anism. In Section 4.5, we describe the experimental setup and discuss the experimental

results. In Section 4.6, we conclude the chapter and suggest possible directions for future

work.

4.2 Edge resource allocation and pricing problem

We address the Edge Resource Allocation Problem (ERAP) for an edge computing

system with one provider that offers computing resources in the form of Virtual Machines

(VMs). In this network, servers are located either at the edge or on the clouds. Since the

edge servers are closer to the users, they prefer to run their applications on the edge servers

to obtain better performance. In fact, due to low latency requirements of users’ applications,

it is always more desirable for them to run their applications on edge servers that guarantee

lower latency. However, the capacity of edge resources is more restricted than that of the

54

Table 4.1: Types of VM instances used in the experiments.

Type vCPU Memory (GB) SSD Storage (GB)
medium 1 3.75 (1 unit) 1× 4 (1 unit)
Large 2 7.5 (2 units) 1× 32 (8 units)
Xlarge 4 15 (4 units) 2× 40 (20 units)
2xlarge 8 30 (8 units) 2× 80 (40 units)

cloud servers. Therefore, users have to compete to obtain computing resources on the edge

servers. The provider uses an auction model to provide VM instances, where the price of

resources is not pre-defined, but determined by employing a mechanism. The system allows

dynamic provisioning of VMs, and does not require pre-provisioning the VMs. Therefore,

the provider can fulfill dynamic market demands efficiently.

In this network, there are n users who are competing for resources situated at two levels,

edge (l = 1), and cloud (l = 2), where l denotes the level. In both edge and cloud servers,

m types of VM instances are available to serve users, where each type of VM instance

is characterized by d types of resources. A VM instance of type j provides qjk units of

resource of type k. Here, we consider the aggregated resource capacity at each level, that

is, the total capacity at the edge or cloud level. The total amount of resource of type k

available at level l is denoted by Ckl. As an example, let us consider Amazon’s Elastic

Compute Cloud (EC2) M3 family of VM instances (see Table 4.1). In these instances, there

are three types of resources (d = 3): vCPU (k = 1), memory (k = 2), and storage (k = 3).

A ‘large’ VM instance of type j = 2 consists of 2 units of vCPU, 2 units of memory, and 8

units of storage. That is, the instance of type j = 2 is characterized by q21 = 2, q22 = 2,

and q23 = 8.

User i submits a request for a bundle of VM instances which is denoted by θi =

(bi; {rij}) = (bi; ri1, . . . , rim), where bi is the bid and rij is the number of VM instances

of type j requested by user i. The main reason for considering the requests as bundles of

heterogeneous VMs is that users often require to execute tasks with different functionalities

and roles on a set of VMs of different types [59]. It is safe to assume that the total request

of a user for each type of resources is less than the available capacity for that type. The

55

requests are submitted to a mechanism that determines the provisioning and allocation of

VM instances to users and the price they have to pay for their allocations.

A resource allocation and pricing mechanism for the above setting can be viewed as

a hybrid of a multi-unit combinatorial auction [104] and a position auction [103]. It is

a position auction because, (i) the auctioneer never allocates the bundle request of a user

to more than one level, and (ii) users have different preferences for each level (position)

of resources, with resources at the edge being more preferred. To characterize the user’s

preference for the edge and cloud level, we define αl as the preference factor for level l

which is determined based on the average distance between users and resources at level l

(obviously, α1 ≥ α2). Since the latency is determined by the distance between users and

servers, the preference factor captures the service latency as well. Furthermore, since there

are several VM instances of the same type in each level and users bid for a bundle of

resources, the problem can also be viewed as a multi-unit combinatorial auction.

We assume that users are not interested in partially executing their tasks. Also, they do

not obtain any value by partially executing on edge and partially on the cloud level (due

to the undesirable variable latencies that may occur by executing their tasks on different

levels of the network). In other words, we assume that users are single minded [105], that

is, a user is only interested in a single bundle. The user values this bundle and any superset

of it at the same amount, and all other bundles at zero. If the allocation function allocates

the requested bundle of a user and any superset of it in the first level, then the user values

the bundle and any superset of that bundle at the same amount. If the allocation function

allocates the requested bundle of a user and any superset of it in the second level, then the

user values it at the same amount (but this value is less than the value in the first case);

otherwise, the user values the allocation at zero.

Let ai = {a1
i , a

2
i } be the allocation for user i determined by the allocation mechanism,

where ali = (ali1, . . . , a
l
im) is the allocation of resources at level l for user i, and alij is the

number of VM instances of type j allocated to this user on level l. Thus, the valuation

56

function for user i is as follows,

vi(ai) =


α1bi if ri � a1

i

α2bi if ri � a2
i and ri 6� a1

i

0 otherwise

(4.1)

where ri � ali, if rij ≤ alij, ∀j ∈ {1, . . . ,m}. The valuation represents the maximum price

that a user is willing to pay for the requested bundle at each level. Since α1 > α2, users

prefer the allocation at the edge level instead of that at the cloud level.

In our system, the goal is to maximize the social welfare. The social welfare, V , is

the sum of users’ valuations, V =
∑2

l=1

∑n
i=1 αl · bi · xil, where xil is a binary decision

variable that is 1, if the bundle requested by user i is allocated at level l; and 0, otherwise.

Maximizing social welfare helps resource providers increase their revenue, due to the fact

that the system allocates the available VMs to the users who value them the most [105].

Table 4.2 shows the notation we use in the formulation of the problem. The ERAP can be

formulated as a mixed-integer linear program (MILP) as follows,

ERAP-MILP:

maximize V =
n∑
i=1

2∑
l=1

αl · bi · xil (4.2)

subject to:
n∑
i=1

m∑
j=1

rij · qjk · xil ≤ Ckl ∀k,∀l (4.3)

2∑
l=1

xil ≤ 1 ∀i (4.4)

xil ∈ {0, 1} ∀i, ∀l (4.5)

The objective function (4.2) is to maximize the welfare, V , where the welfare is the

57

Table 4.2: Notation

Notation Description
n Number of of users.
m Types of VM instances.
d Number of resource types.
αl Preference factor for level l.
bi Bid of user i.
rij Number of VM instances of type j requested by user i.
Ckl Capacity of resource of type k available at level l.
qjk Amount of resource of type k for a VM of type j.
wk Weight of resource of type k.
πi Base price for user i.
pi Payment of user i.

sum of users’ valuations. Constraints (4.3) ensure that the total allocated requests of each

type of resources to each level does not exceed the capacity of that level. Constraints (4.4)

guarantee that the request of user i is not allocated to more than one level. Finally, con-

straints (4.5) guarantee the integrality of the decision variables.

A pricing mechanism M = (A,P) consists of an allocation function A = (a1, . . . , an)

and a payment rule P = (p1, . . . , pn). The mechanism determines the allocation of re-

quested bundles and the payments based on the users’ bids and the available resources in

the system. It determines a base price for each user i, denoted by πi. Based on the base

price, the price of a unit of resource of type k for user i is defined as πi · wk, where wk is

the weight of the resource of type k. Here, wk is used to differentiate the values of a unit

of different types of resources. Therefore, the price of a VM instance of type j for user i is∑d
k=1 πi · wk · qjk.

We define the payment that user i has to pay to the provider as,

pi =
m∑
j=1

d∑
k=1

rij · qjk · πi · wk (4.6)

We assume that users have quasi-linear utilities (i.e., ui = vi − pi) and are rational, in

the sense that their goal is to maximize their utility.

58

4.2.1 Complexity of ERAP

Here, we prove that the decision version (ERAP-D) of ERAP is NP-complete. This

implies that ERAP is NP-hard. An instance of ERAP-D consists of: a set of users, users’

requests θi = {bi, {rij}}, i = 1, . . . , n, k computational resources of given capacities

{Ckl}, at both levels (i.e., edge and cloud), preference factor αl at level l, and a bound B ∈

R+. The decision problem is to determine whether there exists an allocation of users such

that the social welfare of the assignment (Equation (4.2)) is at least B, and no capacity

constraint is violated.

Theorem 2. ERAP-D is NP-complete.

Proof. We prove that ERAP-D is NP-complete by showing that: (i) ERAP-D belongs

to NP, and, (ii) a well known NP-complete problem is reduced to ERAP-D in polyno-

mial time. For any arbitrary allocation of requests, the feasibility check of the capacity

constraints and computing the social welfare (Equation (4.2)) could be performed in poly-

nomial time, which implies that ERAP-D is in NP.

For the second condition, we consider a special case of the Multiple Multi-dimensional

Knapsack Problem, MMKP, with a fixed number of knapsacks (two knapsacks, one for

each of the two network levels) and a fixed number of dimensions. For simplicity, we

denote this special case by 2D-MMKP. The multi-dimensional knapsack problem for any

fixed number of dimensions is NP-complete [106]. Also, it is well known that the multi-

ple knapsack problem is NP-complete even when the number of knapsacks is two [107].

Therefore, 2D-MMKP is NP-complete.

Now, we show that 2D-MMKP can be reduced to ERAP-D in polynomial time. Let

us define an arbitrary instance of 2D-MMKP with n′ items. Each item i has a value υi

and a weight ωij in dimension j. The capacity of knapsack l in dimension k is C ′kl. The

decision problem is to determine whether there is an assignment of items to each of the two

knapsacks, such that the total value of the items is at least L, while the total weight on each

dimension of each knapsack does not exceed the capacity.

59

We construct an instance of ERAP-D, called Q, based on an arbitrary instance of 2D-

MMKP, called Q′, such that the total social welfare of Q is at least B, if and only if, the

total value of Q′ is at least L. Instance Q consists of n items such that n = n′. The

capacity of resources at level l for resources of type k is defined as Ckl = C ′kl. Let us

assume α1 = α2 = 1. The bid of user i is defined as bi = υi. Also, we let rij = ωij ,

and qjk = 1. We claim that Q has a feasible assignment with social welfare greater than

or equal to B, if and only if, Q′ has a feasible assignment with the total value greater than

or equal to L. Since we assume qjk = 1, any feasible solution for Q is also a feasible

solution for Q′. Also, since we assume that α1 = α2 = 1, the social welfare of the

solution for Q is equivalent to the total value obtained for Q′. Conversely, suppose that

there is an assignment in Q′ with total value greater than or equal to L. We assign the

corresponding users to the edge/cloud levels. Clearly, any feasible solution for Q′ is also a

feasible solution for Q and the total value of the solution for Q′ is equivalent to the social

welfare of the solution for Q.

We proved that ERAP is NP-hard, that is, it is not possible to find an optimal solution

in polynomial time, unless P = NP. On the other hand, incorporating pricing into a

resource allocation model exacerbates the complexity of the problem. Given the fact that a

resource allocation mechanism has to be used efficiently for instances with a large number

of requests and in order to solve the problem in reasonable time, we have to leverage

heuristic methods instead of using commercial solvers. In this chapter, we design two

mechanisms for edge resource allocation and pricing problem, G-ERAP and APX-ERAP.

G-ERAP is a greedy mechanism for resource allocation and pricing in edge systems, that

is individually-rational and envy-free. APX-ERAP is an LP-based
(

1
2d+1

)
-approximation

mechanism for resource allocation and pricing in edge systems. In the following sections,

we describe the proposed mechanisms and discuss their properties.

60

4.3 Envy-free resource allocation and pricing mechanism

In this section, we design a greedy mechanism for resource allocation and pricing,

called G-ERAP. G-ERAP, which is given in Algorithm 3, considers uniform base prices

for each type of VM in the same level. In other words, the price per unit of each VM

type is the same for winners at the same level of the system, but winners at different levels

should pay differently for the same type of VM instance. The mechanism is invoked peri-

odically at time intervals of a specified duration. The allocation and price determined by

the mechanism is valid for the current time interval.

The mechanism collects the requests of users and prioritize them based on their bid

densities, that is, the average bid per unit of resource. The bid density of user i is defined

as,

Bi =
bi∑m

j=1

∑d
k=1 rij · qjk · wk

(4.7)

The mechanism starts the allocation from the edge level for the requests with relatively

high density bid. Once it reaches to a request which is not fitted to the edge level (according

to the size of request), the mechanism starts the allocation on the cloud level.

The input to G-ERAP consists of a vector of requests θi, i = 1, . . . , n from users, and a

vector of resource capacities, C. G-ERAP determines how these resources are allocated to

users. The output of the mechanism consists of the allocation matrix X , where X = [xil],

i = 1, . . . , n, and l = 1, 2, the social welfare V , and the payment vector P = {pi}. First,

the mechanism determines the bid density for each user (line 3). Then, users are sorted

in non-increasing order of their bid densities (line 4), and VM instances are allocated to

users starting from the first level (i.e., the edge level). For the current user, the mechanism

checks if there are enough resources at the current level. If so, the requested VM instances

are allocated to the user, and the social welfare and the capacity are updated (lines 7-11).

If there are not enough resources to allocate the requested bundle at the first level, then

61

Algorithm 3 G-ERAP Mechanism
Input: Vector of requests: θi = (bi; {rij})

Vector of resources’ capacities: C = {Clk}
Output: Allocation matrix: X = {xil}

Total welfare: V
Payment vector: P = {pi}

1: V ← 0
2: X ← 0
3: Bi ← bi∑m

j=1

∑d
k=1 rij ·qjk·wk

∀i ∈ {1, . . . , n}
4: Sort users in non-increasing order of their Bi
5: u← 0, u′ ← 0, l← 1, i← 1
6: while i ≤ n do
7: if Clk ≥

∑m
j=1 rij · qjk ∀k ∈ {1, . . . , d} then

8: Clk ← Clk −
∑m

j=1 rij · qjk ∀k ∈ {1, . . . , d}
9: V ← V + αl · bi

10: xil ← 1
11: i← i+ 1
12: else
13: if l = 1 then
14: u← i− 1
15: l← l + 1
16: else
17: u′ ← i
18: break
19: end if
20: end if
21: end while
22: if u′ < n then
23: B∗ ← Bu′+1

24: else
25: B∗ ← Bu′ − ε
26: end if
27: for each i ∈ {1, . . . , n} do
28: if xi2 = 1 then
29: πi ← α2 ·B∗ + (α1−α2)

2 (Bu +Bu+1)
30: else
31: if xi1 = 1 then
32: πi ← α2 ·B∗
33: else
34: πi ← 0
35: end if
36: end if
37: pi ←

∑m
j=1

∑d
k=1 rij · qjk · πi · wk

38: end for

62

the index of the level is increased by one (i.e., starting allocation of VM instances on the

second level), and the index of the user is stored as the first allocated user in the second

level. This user is denoted by u (lines 12-15). The allocation stops once it reaches a user

(denoted by u′) for which there are not enough resources to satisfy the requested bundle in

the second level (lines 16-18).

Next, G-ERAP determines the payments for each user (lines 19-31). According to the

mechanism, user u is the last user in the sorted order which is allocated to the first level.

Therefore, user u + 1 is the first user in the list that is to be allocated on the second level.

The base price for each user i allocated at edge level is determined as follows,

πi = α2B
∗ +

(α1 − α2)

2
(Bu +Bu+1) (4.8)

The base price for each user i allocated at cloud level is determined as follows,

πi = α2B
∗ (4.9)

where

B∗ =


Bu′+1 if u′ < n

Bu′ − ε otherwise
(4.10)

and u′ is the last allocated user at the cloud level (l = 2). If some users in the sorted list

cannot be allocated at the cloud level, then B∗ is defined based on the bid density of the

first unallocated user in the sorted list. But, if all the remaining users from the first level

are allocated at the second level, then B∗ has a value a bit less than the weighted bid of the

last allocated user (i.e., Bu′ − ε, where ε is a very small positive real number). Note that

if a user is not allocated the requested bundle, then the base payment is 0 (line 30). After

determining the base payments, G-ERAP determines the payment of users according to

Equation 4.6 (line 31).

63

4.3.1 Properties of G-ERAP

G-ERAP combines features from both position [103] and combinatorial auctions [104]

and is not truthful. Here, we do not target truthfulness for our mechanism but instead, we

guarantee that it produces envy-free allocations. Truthful mechanisms are desirable from

the user perspective because truth-telling is the dominant strategy. Thus, users know that by

submitting their true valuation they maximize their utilities independent of the bids of the

other users. However, truthful mechanisms are not necessarily the most desirable mech-

anisms from the auctioneer’s perspective. For example, search engines, such as Google

prefer to employ the Generalized Second Price (GSP) mechanism to sell online advertising

[72]. GSP is an envy-free mechanism and is not truthful, but it generates more revenue than

truthful mechanisms such as Vickrey-Clarke-Groves (VCG). In addition, GSP has a simple

design and is very fast.

Envy freeness allows us to design a computationally efficient mechanism suitable for

providing services in a two-level edge computing systems, where the edge resources are

at the first level and the cloud resources at the second. In the following, we prove that G-

ERAP mechanism is individually-rational and produces envy-free allocations which are

two important and desirable properties of a mechanism [70]. The first property guarantees

that users are willing to participate in the mechanism, while the second guarantees that

when the auction is terminated, no user would be happier with the outcome of another user.

Definition 1 (Individual Rationality). A mechanism is individually rational if for each

user i bidding her true valuation for the bundle, vi − pi ≥ 0 (i.e., a user reporting her true

valuation for the bundle never incurs a loss).

Lemma 3. The base price of a user allocated at the edge level, satisfies πi ≤ α1Bu,

where u is the last user allocated at the edge level (l = 1).

64

Proof. The base price of a user i allocated at the edge level is given by:

πi = α2B
∗ +

(α1 − α2)

2
(Bu +Bu+1)

≤ α2B
∗ +

(α1 − α2)

2
2Bu ≤ α2B

∗ + (α1 − α2)Bu

≤ α1Bu + α2(B∗ −Bu)

Because user u is the last user allocated at the edge level, B∗ ≤ Bu, and thus, πi ≤

α1Bu.

Theorem 4. G-ERAP is individually-rational.

Proof. To prove this theorem, we need to show that the utility of a user reporting (bid-

ding) her true valuation for the requested bundle is non-negative. There are three possible

outcomes for a participant user denoted by i:

Case I. User i is allocated to the edge level (Bi ≥ Bu).

vi − pi = α1Bi

m∑
j=1

d∑
k=1

wk · rij · qjk − πi
m∑
j=1

d∑
k=1

wk · rij · qjk

≥ α1Bu

m∑
j=1

d∑
k=1

wk · rij · qjk − πi
m∑
j=1

d∑
k=1

wk · rij · qjk

Using the result of Lemma 3, we have, vi − pi ≥ 0.

Case II. User i is allocated to the cloud level (Bu ≥ Bi ≥ B∗).

vi − pi = α2Bi

m∑
j=1

d∑
k=1

wk · rij · qjk − πi
m∑
j=1

d∑
k=1

wk · rij · qjk

≥ α2B
∗

m∑
j=1

d∑
k=1

wk · rij · qjk − πi
m∑
j=1

d∑
k=1

wk · rij · qjk

According to Equation (4.9), πi = α2B
∗. Thus, vi − pi ≥ 0.

65

Case III. User i loses the auction (B∗ ≥ Bi). According to Equation (4.1), vi = 0. Because

user i is not allocated any bundle of VMs, pi = 0. Thus, vi − pi = 0.

Definition 2 (Envy-Freeness). An allocation is envy-free if no user can improve her utility

by exchanging bids with any user with the same request for VM instances.

Theorem 5. G-ERAP produces envy-free allocations.

Proof. Let us assume that user i is allocated to the first level (edge), user i′ is allocated to

the second level (cloud), and user i′′ loses the auction, and all of them have the same request

for VM instances. It is obvious that a user cannot improve her utility by exchanging bids

with another user with an identical request for VM instances that is allocated to the same

level. Therefore, we only need to show three cases.

Case I. Users i and i′ cannot improve their utilities by exchanging their bids. By ex-

changing their bids, user i′ is allocated to the first level (edge) and user i is allocated to the

second level (cloud). In this case, we need to show that,

vi(ai)− pi ≥ vi(ai′)− pi′ (4.11)

and,

vi′(ai′)− pi′ ≥ vi′(ai)− pi (4.12)

These equations are equivalent to,

α1bi − πi
m∑
j=1

d∑
k=1

wk · rij · qjk ≥

α2bi − πi′
m∑
j=1

d∑
k=1

wk · rij · qjk (4.13)

66

and,

α2bi′ − πi′
m∑
j=1

d∑
k=1

wk · ri′j · qjk ≥

α1bi′ − πi
m∑
j=1

d∑
k=1

wk · ri′j · qjk (4.14)

According to the definition of Bi (Equation (4.7)), we rewrite Equation (4.13) as,

α1Bi

m∑
j=1

d∑
k=1

wk · rij · qjk − πi
m∑
j=1

d∑
k=1

wk · rij · qjk ≥

α2Bi

m∑
j=1

d∑
k=1

wk · rij · qjk − πi′
m∑
j=1

d∑
k=1

wk · rij · qjk

=⇒ α1Bi − πi ≥ α2Bi − πi′ (4.15)

Similarly, Equation 4.14 is equivalent to,

α2Bi′ − πi′ ≥ α1Bi
′ − πi (4.16)

Based on Equations (4.15) and (4.16), we only need to show that,

Bi′(α1 − α2) ≤ πi − πi′ ≤ Bi(α1 − α2) (4.17)

Using the definition of Bu and B∗ from Equations (4.8) and (4.10) we obtain, B∗ ≤ Bi′ ≤

Bu+1 ≤ Bu ≤ Bi. Also, based on Equations (4.8) and (4.9),

πi − πi′ =
(α1 − α2)

2
(Bu +Bu+1) (4.18)

Thus,
(α1 − α2)

2
(Bi′ +Bi′) ≤ πi − πi′ ≤

(α1 − α2)

2
(Bi +Bi)

67

(α1 − α2)Bi′ ≤ πi − πi′ ≤ (α1 − α2)Bi (4.19)

Therefore, for this case, G-ERAP produces envy-free allocations.

Case II. Users i and i′′ cannot improve their utilities by exchanging their bids. In this

case, user i loses the auction and user i′′ is allocated to the first level (edge). It is obvious

that the utility of user i does not improve, thus, we only need to show that the utility of

user i′′ does not improve. In this case, we need to show that, vi′′(ai′′)− pi′′ ≥ vi′′(ai)− pi.

This is equivalent to show that,

0 ≥ α1Bi′′

m∑
j=1

d∑
k=1

wk · ri′′j · qjk − πi
m∑
j=1

d∑
k=1

wk · ri′′j · qjk (4.20)

which is equivalent to show that,

0 ≥ α1Bi′′ − πi (4.21)

Also, based on Equation (4.8),

πi ≥ α2B
∗ +

(α1 − α2)

2
(2B∗) =⇒ πi ≥ α1B

∗ ≥ α1Bi′′ (4.22)

which satisfies Equation (4.21).

Case III. User i′ and user i′′ cannot improve their utility by exchanging their bids. By

exchanging their bids, user i′ loses the auction and user i′′ is allocated to the second level

(i.e., cloud). In this case, the utility of user i′ does not improve, thus, we only need to

show that the utility of user i′′ does not improve. For this purpose, we need to show that,

vi′′(ai′′)− pi′′ ≥ vi′′(ai′)− pi′ . This is equivalent to show that,

0 ≥ α2Bi′′

m∑
j=1

d∑
k=1

wk · ri′′j · qjk − πi′
m∑
j=1

d∑
k=1

wk · ri′′j · qjk (4.23)

68

which is equivalent to show that,

0 ≥ α2Bi′′ − πi′ (4.24)

According to Equation (4.10), B∗ ≥ Bi′′ . Therefore, based on Equation (4.9), πi′ =

α2B
∗ ≥ α2Bi′′ which satisfies Equation (4.24).

Now, we investigate the time complexity of G-ERAP. The time complexity of comput-

ing the bid densities (line 3) is O(nmd). Sorting the users (line 4) takes O(n log n). The

main part of the algorithm consists of the loop in lines 7-19 which executes n times. In

each iteration, the available capacity for each type of resources is compared with the total

request of the user for that resource type (lines 8-9), which takes O(md). Therefore, the

time complexity of G-ERAP is O(n log n+ nmd).

4.4 LP-based approximation mechanism for resource allocation and pricing

In this section, we focus on designing a mechanism that provides guarantees with re-

spect to how far from the optimal is the solution obtained by the mechanism. We develop

an LP-based approximation mechanism, APX-ERAP, for solving the ERAP. APX-ERAP

is an extension of a (1
d+1

) - approximation algorithm [108] for the d-dimensional knapsack

problem, MDKP. In fact, ERAP can be viewed as a weighted multi-dimensional multiple

knapsack problem composed of two knapsacks (two levels of resources). Each knapsack

has d dimensions (d types of resources) with a limited capacity, Clk, for each dimension k.

There are n items (n users) that are to be assigned to the knapsacks. The size of item i in

dimension k is
∑m

j=1 rij · qjk, the profit of item i in knapsack l is αl · bi, and the objective

is to maximize the total profit which is
∑n

i=1 αl · bi · xil.

The original algorithm [108] first solves the LP relaxation of MDKP which considers

only one d-dimensional knapsack. The LP relaxation solution contains a set of completely

assigned items, I , and a set of at most d fractionally assigned items, F . Then, the algorithm

considers two feasible solutions for the knapsack: assigning all items in I to the knapsack

69

or assigning the most profitable item in F to the knapsack. The algorithm selects the

solution that maximizes the profit. In APX-ERAP, we extend this idea to solve the ERAP,

which considers two d-dimensional knapsacks. The LP relaxation solution of ERAP-MILP

contains a set of completely assigned users at the edge level, I1, a set of completely assigned

users at the cloud level, I2, a set of at most d fractionally assigned items at the edge level,

F1, and a set of at most d fractionally assigned items at the cloud level, F2. Then, based

on these sets, the algorithm determines the most valuable allocations for the edge level and

the cloud level.

APX-ERAP is given in Algorithm 4. The input to APX-ERAP consists of a vector of

requests from users, θi, and a vector of resource capacities, C. The output of the mech-

anism consists of the allocation matrix, X = {xil}, the social welfare V , and the vector

of payments of users, P = {pi}. The mechanism first sorts the users in non-increasing

order of their bid densities (lines 3-4). This order is used when the algorithm determines

the payment of users. Then, the algorithm solves the LP relaxation of ERAP-MILP by

calling LP-SOLVE(ERAP) and saves the solution in matrix X̄ = {x̄il} (line 5). Then, it

defines Fl = {i : 0 < x̄il < 1} as the set of users that have fractional allocations at level l,

Il{i |x̄il = 1}, as the set of users that are completely allocated on level l, and νl as the total

bids of users who are completely allocated on level l (lines 6-7). One feasible solution for

the problem is to allocate users in I1 at the edge level and users in I2 at the cloud level.

An alternative solution is to select two users from F1 ∪ F2 and allocate one of them at the

edge level and the other one at the cloud level. This solution is also feasible, because we

assume that the size of each user’s request is less than the capacity. Based on these facts,

the mechanism determines the allocation at the edge level and the cloud level.

To obtain the maximum social welfare, the mechanism compares the two highest bids

of users in F1 ∪ F2 with the sum of the bids of users in I1, ν1, and the sum of the bids

of users in I2, ν2. For this purpose, it determines the index of the two highest bidders

in F1∪F2, denoted by max1 and max2 (lines 9-10). Then, it considers four possible cases

70

Algorithm 4 APX-ERAP
Input: Vector of requests: θi = (bi; {rij})

Vector of resources’ capacities: C = {Clk}
Output: Allocation matrix: X = {xil}

Total welfare: V
Payment vector: P = {pi}

1: V ← 0
2: X ← {0}
3: Bi ← bi∑m

j=1

∑d
k=1 wk·rij ·qjk

∀i ∈ {1, . . . , n}
4: Sort users in non-increasing order of Bi
5: X̄ ← LP-SOLVE(ERAP)
6: Fl ← {i : 0 < x̄il < 1}, l = 1, 2
7: Il ← {i : x̄il = 1}, l = 1, 2
8: νl ←

∑
i∈Il bi, l = 1, 2

9: max1 ← argmaxi∈F1∪F2
bi

10: max2 ← argmaxi∈F1∪F2\{max1} bi
11: case1: ν1 < bmax1 and ν2 < bmax2
12: V ← α1 · bmax1 + α2 · bmax2
13: xmax11 ← 1
14: xmax22 ← 1
15: case 2: ν1 ≥ bmax1 and ν2 ≥ bmax2
16: V ← α1 · ν1 + α2 · ν2

17: xi1 ← 1 ∀i ∈ I1

18: xi2 ← 1 ∀i ∈ I2

19: case3: ν1 < bmax1 and ν2 ≥ bmax2
20: V ← α1 · bmax1 + α2 · ν2

21: xmax11 ← 1
22: xi2 ← 1 ∀i ∈ I2

23: case4: ν1 ≥ bmax1 and ν2 < bmax1
24: V ← α1ν1 + α2 · bmax1
25: xi1 ← 1 ∀i ∈ I1

26: xmax12 ← 1
27: for each i ∈ {1, . . . , n} do
28: if xi1 = 1 then
29: πi ← α1Bi+1

30: else
31: if xi2 = 1 then
32: πi ← α2Bi+1

33: else
34: πi ← 0
35: end if
36: end if
37: pi ←

∑m
j=1

∑d
k=1 rij · qjk · πi · wk

38: end for

71

for values of ν1, ν2, bmax1 , and bmax2 (lines 11-26). In each case, the mechanism allocates

users in such a way that the social welfare is maximized. In the first case, since ν1 <

bmax1 and ν2 < bmax2 , the mechanism allocates the user with index max1 at the edge

level and user with index max2 at the cloud level. In the second case, since ν1 ≥ bmax1

and ν2 ≥ bmax2 , the mechanism allocates users in I1 at the edge level and users in I2 at the

cloud level. In the third case, since ν1 < bmax1 and ν2 ≥ bmax2 , it allocates the user with

index max1 at the edge level and users in I2 at the cloud level. Finally, in the last case,

since ν1 ≥ bmax1 and ν2 < bmax2 , the mechanism assigns users in I1 at the edge level and

user with index max1 at the cloud level.

Next, the APX-ERAP determines the payments for users (lines 27-35). The algorithm

considers variable base prices in which winners of the same level may have different base

prices. For user i allocated at level l, the base price is calculated as,

πi = αlBi+1 (4.25)

where Bi+1 is the highest bid density of the user after user i in the non-increasing order of

bids.

4.4.1 Properties of APX-ERAP

Here, we prove that APX-ERAP is a
(

1
2d+1

)
-approximation mechanism, where d is the

number of types of physical resources. We also show that the mechanism is individually-

rational.

Lemma 6. In the LP relaxation of ERAP, where 0 ≤ xil ≤ 1, there are at most d users

that are fractionally allocated at the edge level and at most 2d users that are fractionally

allocated at the cloud level.

Proof. Let x̄ = {x̄li} be the solution obtained by LP-relaxation, and Fl = {i : 0 < x̄il < 1}

be the set of users that are fractionally allocated at level l. For user‘i that is fractionally

allocated at the edge level (i ∈ F1), Constraint (4.4) and Constraint (0 ≤ xil ≤ 1) are re-

72

dundant. The reason is that, since α1 > α2, the only constraint that does not allow a higher

fraction of allocation for user i at the edge level is the limited capacity (Constraint (4.3)).

Since Constraint (4.3) is the only set of constraints in the LP relaxation model, the total

number of constraints related to the edge level is d. Therefore, any basic feasible solution

of this relaxation has at most d fractional variables at the edge level (i.e., |F1| ≤ d).

For the set of users that are fractionally allocated at the cloud level (i ∈ F2), there are

two possible subsets: (i) the set of users that are fractionally allocated at both edge level and

cloud level (i.e., F1∩F2); (ii) the set of users that are fractionally allocated at the cloud level

only (i.e., F2 \ F1). It is obvious that the number of users in the first set is not more than d.

In the second set, the only constraint that does not allow a higher allocation is the capacity

constraint (Constraint (4.3)). Thus, Constraint (4.4) and Constraint (0 ≤ xil ≤ 1) are

redundant for users in this set. Therefore, there are at most d fractional variables associated

with the users in this set. Therefore, the total number of users fractionally allocated at the

cloud level is at most 2d.

Theorem 7. APX-ERAP is a
(

1
2d+1

)
-approximation mechanism for ERAP.

Proof. Let X∗ be the optimal allocation matrix and OPT be the total social welfare of

the optimal solution. The solution to the LP relaxation is an upper bound on the optimal

solution,

OPT ≤ LP ≤ α1 · (
∑
i∈F1

bi +
∑
i∈I1

bi) + α2 · (
∑
i∈F2

bi +
∑
i∈I2

bi) (4.26)

For the four possible cases mentioned in Algorithm 4, we can easily show that,

V ≥ α1 · bi + α2 · bj ∀i ∈ F1, j ∈ F2 (4.27)

According to Lemma 6, there are at most d items in F1 and at most 2d items in F2. There-

73

fore,

2d · V ≥ α1 ·
∑
i∈F1

bi + α2 ·
∑
i∈F2

bi (4.28)

Also, V ≥ α1 · ν1 + α2 · ν2. Thus,

(2d+ 1) · V ≥ α1

∑
i∈F1

bi + α2

∑
i∈F2

bi + α1ν1 + α2ν2 ≥ OPT (4.29)

Therefore, V ≥ OPT
2d+1

.

Theorem 8. APX-ERAP is individually-rational.

Proof. To prove this theorem, we need to show that the utility of a user reporting her true

valuation for the requested bundle is non-negative. There are two possible outcomes of

each user i:

Case I. User i is allocated to level l.

vi − pi = αlBi

m∑
j=1

d∑
k=1

wk · rij · qjk − αlBi+1

m∑
j=1

d∑
k=1

wk · rij · qjk

Therefore, since Bi ≥ Bi+1, we have, vi − pi ≥ 0.

Case II. User i loses the auction. According to Equation (4.1), vi = 0. Because user i is

not allocated any bundle of VMs, pi = 0. Thus, vi − pi = 0.

Now, we investigate the time complexity of APX-ERAP. The most time consuming

part of the algorithm is solving the LP relaxation of ERAP-MILP, which takes polyno-

mial time [109]. The other parts of the algorithm also have polynomial time complexity.

Therefore, the time complexity of the algorithm is polynomial.

4.5 Experimental Analysis

We perform an extensive experimental analysis to evaluate the performance of the pro-

posed mechanisms, G-ERAP and APX-ERAP with respect to several key metrics. First,

74

we compare the performance of the mechanisms with that of the optimal solution obtained

by solving small-size instances of the ERAP-MILP problem using the CPLEX solver [98].

Second, we compare the performance of the two proposed mechanisms for large-size prob-

lem instances. Since for the large-size instances, obtaining the optimal solution for ERAP-

MILP within a reasonable amount of time is not possible, we compare the performance of

the proposed mechanisms with that of the LP relaxation of ERAP-MILP. Furthermore, to

investigate the impact of dynamic provisioning, we compare the performance of the mech-

anisms under both dynamic provisioning and static pre-provisioning. In the following, we

describe the experimental setup and analyze the experimental results.

4.5.1 Experimental setup

We generate several problem instances with different number of users, demands, and

capacities for the edge and cloud. In our experiments, the provider offers four types of

VM instances as shown in Table 4.1. These types of VM instances are based on Amazon’s

Elastic Compute Cloud (EC2) M3 family of instances. In this family, four types of VM

instances are defined, medium, large, xlarge, and 2xlarge. Each type of VM instance pro-

vides a combination of three types of resources, vCPU, memory, and storage. We assume

that the same types of VMs can be provided at both the edge and the cloud levels. However,

depending on the capacity of resources, during the dynamic provisioning, some types of

VMs may not be provisioned at the edge or cloud level. We define 3.75 GB of memory as

one unit of memory and every 4GB of storage as one unit of storage. Therefore, in the EC2

VM instances, the size of CPU and memory varies from 1 unit to 8 units, while the size

of storage varies from 1 unit to 40 units. The distribution of the other parameters that are

used to generate problem instances in our simulation experiments are shown in Table 4.3.

In this table, we denote by U [a, b], the uniform distribution within interval [a, b]. The bid

bi of user i must be proportional to the total amount of request of users i. Therefore, to

generate bid bi, we first draw from U [1, 10], the bid per unit of resource. Then, we mul-

tiply this value by the total size of the request of user i, Ri =
∑m

j=1

∑d
k=1wk · qjk · rij .

75

Table 4.3: Simulation parameters for small instances

Parameter Distribution

C1, C2
small: 25000
large: 250000

C3
small: 200000
large: 2000000

rik U [0, 10]
w [1, 1, 1]

We also use the uniform distribution to generate rik, the number of VM instances of each

type that are requested by user i. We evaluate the performance of the mechanisms for both

small-size instances and large-size instances. For small-size instances, the number of users

varies from 100 to 500. Since the number of VM instances of each type of VM is drawn

from U [0, 10], the total request of users for each type of VM varies from 100 · U [0, 10]

to 500 · U [0, 10]. Thus, to cover the requests of a reasonable number of users, the avail-

able capacity of each type of resources must be proportional to these values. For CPU

and memory, the available capacity is 25000, while for the storage the available capacity

we use 200000. For large-size instances, the number of users varies from 5000 to 50000.

Thus, to cover the requests of a reasonable number of users, the available capacity of CPU

and memory is 250000, while for the storage the available capacity we use 2000000. The

vector of resource weights w, for the three types of resource is given in the last row of

the table. For each size of instances, we execute G-ERAP and APX-ERAP, and CPLEX

for 10 randomly generated instances and perform our analysis based on the average values.

One of the important factors on the performance of the mechanisms is the amount

of available resources at the edge level and the cloud level. Therefore, we define a pa-

rameter ρEC , called edge-cloud resource capacity ratio, which is the sum of the ratios of

the capacity for each type of resources at the edge and the capacity at the cloud level,

ρEC =
∑d

k=1(Ck1

Ck2
).

Social welfare and revenue are two important measures for the efficiency of resource

allocation mechanisms. To characterize the welfare and revenue obtained by G-ERAP and

APX-ERAP, we define two relative metrics: (i) the social welfare ratio, Vr = V
V ∗

, where

76

V is the social welfare obtained by G-ERAP or APX-ERAP, and V ∗ is the social welfare

of the optimal solution obtained by CPLEX; and, (ii) the revenue ratio,Rr = R
R∗

, where R

is the revenue obtained by G-ERAP or APX-ERAP, and R∗ is the revenue obtained by the

optimal solution obtained by CPLEX. R∗ and R are calculated using Equation (4.6). Note

that, to determine the revenue of the CPLEX solution, we use the pricing rule defined for

APX-ERAP.

To investigate the impact of the dynamic provisioning on the performance of the mech-

anisms, we compare their performance considering two types of MEC systems: one that

allows dynamic provisioning, and another one in which the VMs are pre-provisioned. Both

systems have the same amount of physical resources. In the system with pre-provisioning,

the resources are equally provisioned into four types of VMs. In fact, since we assume

the same range of demand for each type of VMs (the number of requests for each type of

VMs for each user is drawn from the same distribution), we equally distribute the resources

among the four types of VMs.

The mechanisms are implemented in C++ and the experiments are conducted on an Intel

1.6GHz Core i5 system with 8 GB RAM. For solving ERAP-MILP, we use the CPLEX 12

solver provided by IBM ILOG CPLEX optimization studio for academics initiative [98].

4.5.2 Analysis of results

In this section, we compare the performance and the scalability of the mechanisms for

different types of problem instances. First, we investigate the performance of the mecha-

nisms for small-size instances by comparing with the CPLEX solution. Then, we investi-

gate the scalability and performance of the mechanisms for large-size instances. Finally,

we investigate the performance of the mechanisms on systems with different edge-cloud

resource capacity ratio values.

Performance with respect to the number of users (small-size instances). First, we in-

vestigate the effects of the number of users on the performance of the mechanisms. In

this experiment, we compare the performance of the mechanisms against the optimal solu-

77

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

100 150 200 250 300 350 400 450 500

E
x

e
c
u

ti
o

n
 t

im
e
 (

m
se

c
)

n

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)

APX-ERAP (α1=2, α2=1)
CPLEX (α1=2, α2=0.1)

CPLEX (α1=2, α2=1)

(a) Execution time

 50

 60

 70

 80

 90

 100

 110

100 150 200 250 300 350 400 450 500

S
e
rv

e
d

 u
se

rs
 (

%
)

n

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)

APX-ERAP (α1=2, α2=1)
CPLEX (α1=2, α2=0.1)

CPLEX (α1=2, α2=1)

(b) Percentage of served users

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

100 150 200 250 300 350 400 450 500

V
r

n

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)
APX-ERAP (α1=2, α2=1)

(c) Social welfare

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

100 150 200 250 300 350 400 450 500

R
r

n

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)
APX-ERAP (α1=2, α2=1)

(d) Revenue

Figure 4.1: The effect of the total number of users, n, on the performance (small-size
instances).

tions obtained by solving ERAP-MILP using CPLEX. For this purpose, we only consider

small-size problem instances. We consider a fixed amount of total capacity for each type of

physical resources at both edge and cloud levels. We set ρEC for each type of resource in-

stance to 1/9, that is, 90% of the total capacity of each type of resources is at the cloud level,

and 10% at the edge level. We perform experiments with two sets of problem instances.

In order to investigate the performance of the proposed mechanisms for applications with

different latency requirements, we perform our experiments using two sets of values for

(α1, α2). For the first set, we consider the preference factors α1 = 2, and α2 = 1, while for

the second set, we consider α1 = 2, α2 = 0.1. We consider different number of users, n,

ranging from 100 to 500. Figure 4.1a shows the execution time of G-ERAP, APX-ERAP,

and CPLEX for the two sets of problem instances. In all cases, the execution time of G-

ERAP is less than one millisecond, significantly smaller than the time required by CPLEX

78

to obtain the solution. Also, the execution time of APX-ERAP is less than 11 millisec-

onds. We observe an increase in the execution time of G-ERAP with the increase in the

number of users. The reason is that the running time of the mechanims grows linearly with

the number of users. Overall, both G-ERAP and APX-ERAP are not very sensitive to the

number of users. In contrast, the execution time of CPLEX is very sensitive to the number

of users and it increases significantly as the number of users in the system increases. Fig-

ure 4.1b shows the percentage of users served by the provider when employing the solution

determined by G-ERAP, APX-ERAP, and CPLEX. For instances with a small number of

users, there is no difference between the solution of the mechanisms in terms of the number

of served users. With an increase in the number of users we observe that G-ERAP serves

more users. The reason is that G-ERAP greedily allocates users that have high bid density.

Therefore, it may assign users that have relatively higher bid and smaller request size.

Figure 4.1c shows the social welfare ratio for the two sets of problem instances. The

results obtained by G-ERAP and APX-ERAP for both sets of problem instances are fairly

close to those of CPLEX. Furthermore, the value of social welfare ratio is above 0.93. In

most cases, the performance of APX-ERAP is better than that of G-ERAP, specially for

the second set of problem instances (α1 = 2, α2 = 0.1) in which the the edge level is more

preferred. In fact, both G-ERAP and APX-ERAP are more sensitive to the number of users

for the second set of instances. The reason is that when applications have significantly low

latency requirements, α1 � α2, any inappropriate allocation has significant effects on

the social welfare. Figure 4.1d shows the revenue ratios. We observe no significant gap

between the performance of APX-ERAP and that of CPLEX. The reason is that APX-

ERAP and CPLEX use the same pricing rule. However, G-ERAP obtains lower revenue

than the other mechanism. The reason is that G-ERAP considers a lower payment for

the allocated users. Furthermore, we observe that for n ≤ 350, the revenue obtained by

G-ERAP decreases by increasing the number of users, while for n > 350, the revenue

increases by increasing the number of users. The reason is that for n ≤ 350 the provider

79

has enough capacity to allocate most of the users. Thus, by increasing the number of users,

more users are allocated. This results in a higher revenue for CPLEX which is obtained by

adding the bids of the winners. However, the revenue of G-ERAP which is obtained based

on the bids of the last allocated bidder and the first losing bidder on the cloud and the edge

level, does not grow at the same rate. For n > 350 when the number of losers increases

(see Figure 4.1b), the ratio between the highest bidder that loses and the average bids of

winners decreases. Thus, the revenue of G-ERAP, which is affected by the bids of losers,

gets closer to the revenue of CPLEX which is based on the bids of the winners. Another

observation is that the revenue obtained by G-ERAP is closer to that of CPLEX for the

case α1 � α2. The reason is that for these settings the low revenue obtained by G-ERAP

from the cloud side does not affect the total revenue of the system (due to the small value

of α2).

Performance and scalability with respect to the number of users (large-size instances).

We now evaluate the performance of G-ERAP and APX-ERAP by varying the number of

users. We assume a fixed capacity at both edge and cloud level and vary the number of

requests from 5000 to 50000. In this set of experiments, we assume that 90% of resources

are at the cloud level while only 10% of resources are available at the edge level. The

values of other parameters are given in Table 4.3. Since CPLEX is not feasible to be used

for solving such large instances, we will not compare the performance of our mechanisms

against the performance of the optimal solution obtained by solving ERAP-MILP. Instead,

we will compare the performance of our mechanisms against the LP relaxation of ERAP-

MILP (which gives the upper bound on the optimal solution). In order to do this, we

redefine the social welfare ratio as the ratio between the social welfare obtained by G-

ERAP or APX-ERAP, and the social welfare obtained by the LP relaxation solution. We

also redefine the revenue ratio, as the ratio between the revenue obtained by G-ERAP or

APX-ERAP, and the revenue obtained by the LP relaxation solution.

Figure 4.2a shows the average execution time of both G-ERAP and APX-ERAP, for

80

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

E
x

e
c
u

ti
o

n
 t

im
e
 (

m
se

c
)

n

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)
APX-ERAP (α1=2, α2=1)

(a) Execution time

 0

 10

 20

 30

 40

 50

 60

 70

 80

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

S
e
rv

e
d

 u
se

rs
 (

%
)

n

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)
APX-ERAP (α1=2, α2=1)

(b) Percentage of served users

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

V
r

n

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)
APX-ERAP (α1=2, α2=1)

(c) Social welfare

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

R
r

n

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)
APX-ERAP (α1=2, α2=1)

(d) Revenue

Figure 4.2: The effect of the total number of users, n, on the performance (large-size
instances).

the two sets of problem instances. We observe that by increasing the number of users,

the execution time of both G-ERAP and APX-ERAP increases linearly. For example, the

average execution time of G-ERAP for n = 5000 is about 2.5 milliseconds and for n =

50000, the average execution time is about 18 milliseconds. We observe a similar behavior

for APX-ERAP. The average execution time of APX-ERAP for n = 5000 is about 120

milliseconds and for n = 50000, the average execution time is about 1790 milliseconds.

Figure 4.2b shows the average percentage of served users for various numbers of users.

We observe that by increasing the number of users, a lower percentage of users are served.

This is because the total capacity is fixed and the system is not able to serve all the requests.

Again, we observe that by increasing the number of users, G-ERAP serves more users.

The reason is that G-ERAP may greedily assign users that have relatively higher bids and

smaller request sizes. Figure 4.2c shows the effect of the number of users on the social

81

welfare for the two sets of problem instances. Both G-ERAP and APX-ERAP are able

to maintain a welfare ratio above 0.95. A similar behavior is observed for APX-ERAP

when we consider the effects of the number of users on the revenue (Figure 4.2d), where

the revenue ratio is kept above 0.95. However, G-ERAP obtains a lower revenue compared

to APX-ERAP. The reason is that the LP relaxation and APX-ERAP use the same pricing

rule to determine the revenue while G-ERAP considers a lower payment for the allocated

users. We also observe that by increasing the number of users, the revenue of G-ERAP gets

closer to that obtained by the LP relaxation. The reason is that by increasing the number of

users, the number of losers increases. Thus, with a high probability, the ratio between the

bid of the highest bidder that loses and the average bid of the winners decreases. Therefore,

the revenue of G-ERAP, which is affected by the bids of losers, becomes closer to the

revenue obtained by the LP relaxation, which is based on the bids of the winners. The

experimental results on large-size instances show that G-ERAP can solve fairly large-size

problem instances within 20 milliseconds while keeping the social welfare and revenue

within an acceptable distance from those obtained by the LP relaxation solution. These

results show that G-ERAP can be employed efficiently in real world systems with a large

number of users.

Performance with respect to dynamic provisioning. Here, we investigate the effects of

the dynamic provisioning on the performance of the system. For this purpose, we consider

a system in which the number of VM types at each level is pre-determined (as explained in

subsection 4.5.1). In this set of experiments, we consider the same setup as that for large

size instances. We vary the number of requests from 5000 to 50000. For more readability,

in Figure 4.3 we show the performance of the mechanisms in the pre-provisioning (denoted

by G-ERAP-P and APX-ERAP-P) and dynamic provisioning cases only for preference

factors α1 = 2, α2 = 1. Figure 4.3a shows that the social welfare of the system in the

pre-provisioning case is lower than in the case of dynamic provisioning for both G-ERAP

and APX-ERAP. Figure 4.3b shows a similar behavior of the mechanisms in terms of the

82

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

V
r

n

G-ERAP

G-ERAP-P

APX-ERAP

APX-ERAP-P

(a) Social welfare

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

R
r

n

G-ERAP

G-ERAP-P

APX-ERAP

APX-ERAP-P

(b) Revenue

Figure 4.3: The effect of the dynamic provisioning on the social welfare and the revenue
(α1 = 2, α2 = 1).

revenue. The reason behind this observation is that in a system with pre-provisioning, some

VMs that are statically provisioned may not be used as they are the surplus to the demand,

while some other VMs that are more wanted are scarce. Therefore, the resource manager

is not able to utilize its resources according to the demand, and the social welfare and the

revenue of the system decreases.

Performance with respect to the edge-cloud resource capacity ratio (large-size in-

stances). In this set of experiments, we investigate the effects of the edge-cloud resource

capacity ratio, ρEC on large-size problem instances with 10000 users. We draw the total

capacity of each type of physical resources from the distributions given in Table 4.3 and

keep it fixed. We allocate the capacity to each level according to the following edge-cloud

resource capacity ratios, ρEC = 1
2
, 1

4
, 1

8
, 1

16
, 1

32
, 1

64
, 1

128
, 1

256
, 1

512
, and 1

1024
. These ratios will

allow us to investigate the performance of G-ERAP and APX-ERAP on systems with

plenty of available resources at the edge level (ρEC = 1
2
), and systems with very few re-

sources at the edge level (ρEC = 1
1024

). We perform our experiments with two sets of

problem instances. In the first set, we consider the preference factors α1 = 2, and α2 = 1,

while in the second set, we consider α1 = 2, α2 = 0.1.

Figure 4.4a shows the effects of ρEC on the average execution time of both G-ERAP

and APX-ERAP, for the two sets of problem instances. For all values of ρEC , the execution

83

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/5121/1024

E
x

e
c
u
ti

o
n
 t

im
e
 (

m
se

c
)

ρ
EC

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)
APX-ERAP (α1=2, α2=1)

(a) Execution time

 0

 10

 20

 30

 40

 50

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

S
e
rv

e
d

 u
se

rs
 (

%
)

ρ
EC

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)
APX-ERAP (α1=2, α2=1)

(b) Percentage of served users

 0.7

 0.8

 0.9

 1

 1.1

 1.2

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

V
r

ρ
EC

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)
APX-ERAP (α1=2, α2=1)

(c) Social welfare

 0.7

 0.8

 0.9

 1

 1.1

 1.2

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

R
r

ρ
EC

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)
APX-ERAP (α1=2, α2=1)

(d) Revenue

Figure 4.4: The effect of the capacity ratio on the performance (large-size instances).

time of G-ERAP is less than 10 milliseconds, while the execution time of APX-ERAP is

less than 300 millisecond. Also, the execution time of both G-ERAP and APX-ERAP are

not significantly sensitive to variations of ρEC . Figure 4.4b shows the effects of ρEC on

the percentage of served users when considering the solution obtained by G-ERAP and

APX-ERAP. Similarly to the execution time, we observe that ρEC does not have signifi-

cant effects on the number of served users for both G-ERAP and APX-ERAP solutions.

Figure 4.4c shows the effect of ρEC on the social welfare for the two sets of problem in-

stances. Both G-ERAP and APX-ERAP are able to maintain a welfare ratio above 0.9

even in the worst cases, where resources are very scarce at the edge level (ρEC = 1
1024

). A

similar behavior is observed for APX-ERAP when we consider the effects of ρEC on the

revenue (Figure 4.4d), where the revenue ratio is kept above 0.9 even when the resources at

the edge level are very scarce. The reason is that the same pricing rule is used to determine

84

the revenue of the LP solution and that of APX-ERAP. However, G-ERAP obtains a lower

revenue than the other algorithms due to considering a lower payment for allocated users.

We also observe that when the edge level is more preferred (α1 � α2), the efficiency of

the proposed mechanisms is affected by the distribution of the resources among the levels.

This is because the valuation for the edge level resources is higher and those resources are

scarcer.

Performance comparison with non-combinatorial auctions. In order to investigate the

impact of non-combinatorial bidding on the performance metrics, such as that of the bid-

ding considered by Kiani et al. [66], we compare the performance of G-ERAP and APX-

ERAP algorithms against that of a class of non-combinatorial auctions (called NC-Auction).

In a non-combinatorial auction the user who needs a bundle of VM instances composed of

VM instances of various types, submits a separate bid for each individual type of VM in-

stances in the bundle. This is in contrast with combinatorial auctions (G-ERAP and APX-

ERAP) in which a user submits a single bid for the whole bundle of VM instances. Kiani

et al. [66] employed such a type of non-combinatorial auction. In their approach, a user

submits a bid for each type of VM and the users’ requests are ordered in descending order

of their bids and are allocated accordingly to the edge level and the cloud level. Further-

more, their approach requires static provisioning in which VMs are provisioned in advance.

We generate the bids of users for the whole bundle of the request as described in Subsec-

tion 4.5.1. Thus, the valuation of user i for the whole bundle is obtained by multiplying

the bid per unit of resource and the total size of the request of user i. We assume that the

VMs are complementary goods (i.e., the valuation for two VMs A and B is greater than or

equal to the sum of individual valuations of A and B), and thus in the case of NC-Auction,

the valuation per unit of resource of a partially allocated bundle is reduced between 5-15%

(randomly drawn) compared to the case in which the whole bundle is allocated.

Figure 4.5a shows the social welfare ratio obtained by G-ERAP, APX-ERAP, and

NC-Auction for the two sets of problem instances with (α1 = 2, α2 = 1) and (α1 = 2,

85

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

100 150 200 250 300 350 400 450 500

V
r

n

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)

APX-ERAP (α1=2, α2=1)
NC-Auction (α1=2, α2=0.1)
NC-Auction (α1=2, α2=0.1)

(a) Social welfare

 40

 50

 60

 70

 80

 90

 100

 110

 120

100 150 200 250 300 350 400 450 500

S
e
rv

e
d

 u
se

rs
 (

%
)

n

G-ERAP (α1=2, α2=0.1)
G-ERAP (α1=2, α2=1)

APX-ERAP (α1=2, α2=0.1)

APX-ERAP (α1=2, α2=1)
NC-Auction (α1=2, α2=0.1)

NC-Auction (α1=2, α2=1)

(b) Percentage of served users

Figure 4.5: Comparison with NC-Auction (small-size instances).

α2 = 0.1). In all instances, the social welfare ratio obtained by G-ERAP and APX-ERAP

is higher than that obtained by NC-Auction. The reason is that NC-Auction allocates VMs

based on the individual bids, while G-ERAP and APX-ERAP consider the bid for the

whole bundle. Thus, NC-Auction may greedily allocate a VM instance to a user with a

relatively high individual bid for the VM, while the bids for the other VMs needed by the

user are low. If we consider this as a bundle the sum of the bids in the bundle is low. On

the other hand the G-ERAP and APX-ERAP allocate higher value bundles and will obtain

a higher social welfare. Furthermore, the valuation of a user for the whole bundle of the

request is higher than the sum of the individual bids. Thus, there might be a case in which

user i has a higher individual bid for each type of VM compared to user i′; but the bid for

the whole bundle of user i is lower than that of user i′. In this case, NC-Auction greedily

allocates user i, while G-ERAP and APX-ERAP allocate resources to user i′ and obtains

a higher social welfare.

Figure 4.5b shows the percentage of the served users for the two sets of problem in-

stances. We observe that when the number of users is relatively low (n ≤ 250), G-ERAP,

APX-ERAP, and NC-Auction serve the same percentage of users. The reason is that there

is enough capacity at both edge and cloud levels to serve the requests. As the number of

users increases, NC-Auction allocates a lower percentage of users compared to G-ERAP

and APX-ERAP. NC-Auction may not able to utilize resources according to the demand,

86

thus the number of served users decreases. NC-Auction allocates VMs one by one based

on their individual bids. Thus, a relatively high percentage of users may receive a partial

allocation, while G-ERAP and APX-ERAP only allocate whole bundles.

Our experimental results showed that for small problem instances, both G-ERAP and

APX-ERAP yield solutions close to those obtained by the CPLEX optimal solution. Com-

pared to APX-ERAP, G-ERAP has a very small execution time. However, in systems

where users have high preference for the edge level (α1 � α2), APX-ERAP is more effi-

cient than G-ERAP in terms of social welfare and revenue. Overall, the low execution time

and the acceptable distance from the optimal solution make G-ERAP mechanism suitable

for edge computing systems with a large number of users.

4.6 Conclusion

Monetization of services is one of the grand challenges in edge computing systems. In

this chapter, we proposed two resource allocation and pricing mechanisms in edge com-

puting systems, where users have heterogeneous requests and compete for high quality

services. We proved the properties of the proposed mechanisms and evaluated their ef-

ficiency by performing an extensive experimental analysis. For small-size instances, we

compared the solutions obtained by the proposed mechanisms with the optimal solutions

obtained by the CPLEX solver with respect to execution time, percentage of served users,

social welfare and revenue. For large-size instances, we compared the performance of the

two proposed mechanisms with respect to the same metrics used for the analysis on small-

size instances. The experimental results showed that the resource allocation obtained by

the proposed mechanisms yield near optimal solutions. In addition to the quality of solu-

tions, the small execution time makes the proposed mechanisms promising for deployment

in edge computing systems.

87

CHAPTER 5

VECMAN: A FRAMEWORK FOR ENERGY-AWARE RESOURCE

MANAGEMENT IN VEHICULAR EDGE COMPUTING SYSTEMS

5.1 Introduction

Electric Connected Autonomous Vehicles (eCAVs), the future of our transportation

system, have two main requirements: processing massive amount of data with minimum

latency and having long driving ranges. To address the first requirement computational

nodes must be placed closer to the eCAVs at the edge of the cloud [13]. Thus, in these

so called Vehicular Edge Computing (VEC) systems, computational nodes are placed in

Road-Side Units (RSUs) and exploit the Dedicated Short Range Communication (DSRC)

technology [110] for vehicle-to-vehicle and vehicle-to-RSU communications. However,

the scalability of these systems may be hindered by the amount of vehicles and workloads

in RSU coverage areas. Indeed, due to the limited capacity of RSUs, some computational

tasks may experience poor Quality of Service (QoS) or even failure. In order to improve

reliability, computing resources (e.g., Nvidia Drive Px 2) are installed on each vehicle for

local workload execution and minimized latency. On the other hand, having local comput-

ing resources might affect the eCAV’s driving range. For example, a preliminary study by

Lin et al. [111] shows that a computing node (including computing, storage, and cooling

hardware) can reduce the driving range of a Chevy Bolt by up to 11.5%. However, the

authors only considered three executing tasks on various computing configurations and did

not consider the effect of the eCAV speed on the driving range. To conduct a more general

analysis, we exploit the driving range vs speed data available for the Tesla Model S [112],

which can be used to easily estimate the total power consumption of the eCAV at different

speeds given the battery pack size. Figure 5.1 shows the results for the addition of a com-

puting system of power consumption varying from 0W to 3kW. We observe that the impact

of the computing power on the driving range varies from 10% to 40% for a 2kW computing

power. This is computed for the eCAV traveling at average speeds from 60mph to 20mph,

88

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.4 2.6 2.8 3 3.2
Computing Power (kW)

0

10

20

30

40

50

Dr
iv

in
g

Ra
ng

e
Re

du
ct

io
n(

%
) AVG Speed: 20mph

AVG Speed: 40mph
AVG Speed: 60mph
Rush Hour Speed

Figure 5.1: Effect of computing power on eCAV’s driving range.

respectively. Considering that the rush-hour (i.e., 4-5pm) speed in 20 US cities is 33mph

on average [113], a 2kW computing system can cause a 25% reduction in driving range on

modern electric vehicles. As a result, because most eCAVs on the road during weekdays

travel at rush hours and because during this period eCAVs spend a considerable amount of

time near each other due to traffic, it is desired to design new strategies that allow to reduce

the energy consumption of eCAVs computing systems for longer driving ranges.

In order to achieve high QoS, reliability, and increased driving range, eCAVs in a VEC

system could share their resources. Rather than relying only on the limited capacity of RSU

nodes, the computing resources of the vehicles can be coordinated to achieve energy sav-

ings. The key-intuition for achieving energy savings is to 1) exploit the computational slack

caused by discrete power/QoS settings of computing resources (e.g., CPUs and GPUs), and

2) exploit the non-linear relationship between these settings and the computational power

consumption [114]. First, CPUs commonly have a fixed number of selectable configura-

tions for voltage-frequency levels and number of cores to trade-off power consumption and

QoS. Each configuration leads to a maximum number of instructions that can be executed

within a certain time period. If the local workload exceeds that maximum, the system must

select a new configuration that increases the QoS at the cost of a higher power consumption,

89

e.g., activate more cores or increase the voltage-frequency level. However, this selected de-

fault configuration may not be fully utilized by the local workload, i.e., there exist a slack of

computational capacity that can be used to execute extra workload at the same default con-

figuration. Second, there exist a non-linear relationship between the computational power

consumption and the frequency settings [114]. Thus, a taskset executing on an eCAV op-

erating at a high CPU frequency may consume much more power than the same taskset

partially executing on an eCAV operating at a lower CPU frequency with similar overall

performance. Thus, the system can achieve energy savings by offloading part of requester

vehicle workload (currently operating at a high frequency) to provider vehicles (currently

operating at a low frequency) that can exploit the providers’ computational slack without

changing their default configuration, which limits the provider vehicles power overhead.

Then, at a later time, providers can become requesters to achieve higher energy savings.

Enabling resource sharing among eCAVs in a VEC system requires the dynamic de-

termination of two important parameters: (a) the set of participating vehicles in resource

sharing, and (b) the time duration of resource sharing. However, the uncertainties in the

future location of vehicles make it hard to decide these parameters so that all participants

benefit from resource sharing. In this chapter, we overcome these challenges by proposing

VECMAN, a framework for energy-aware resource management, which consists of two

algorithms: (i) a resource selector algorithm that runs periodically on the local RSU and

determines the set of participating vehicles as well as the duration of resource sharing;

and (ii) an energy manager algorithm that runs periodically at a finer time grain within

each resource sharing time period and determines the state of each participating vehicle,

i.e., requester or provider, the number of replicas for the requesters’ workloads, and the

amount of requester’s workload to offload so that energy consumption is minimized for all

the participating vehicles.

5.1.1 Our contributions

Our main contributions are as follows:

90

• We formulate the resource selection problem and the energy manager problem in

the VECMAN framework. The objective of the resource selector is to dynamically

determine the set of participating vehicles and the duration of the resource sharing

period for maximized computing resources and reliability. The objective of resource

manager is to maximize the total energy saving of vehicles while minimizing the risk

of failure. The VECMAN framework allows partial offloading of vehicles’ workload.

• VECMAN is robust to uncertainties in the future location of vehicles. However,

the optimization problem solved by VECMAN is a chance-constrained problem, and

thus, obtaining the optimal solution in a reasonable amount of time is not freasible.

Therefore, VECMAN is designed based on an iterative algorithm called I-Selector

to solve the resource selection problem, and a greedy algorithm called G-ERMP to

solve the energy-aware resource management problem.

• We test VECMAN using a real-world dataset of vehicular mobility collected in the

city of Cologne, Germany [115]. The results show that VECMAN achieves between

7% and 18% energy savings compared to a baseline that executes workload locally,

and an average of 13% energy savings compared to a baseline that offloads workloads

only to RSUs.

5.1.2 Organization

This chapter is organized as follows. Section 5.2 provides the framework problem for-

mulation. Section 5.3 presents the proposed algorithms that solve the framework problem

formulation. Section 5.4 describes the experimental results and Section 5.5 concludes the

chapter.

5.2 VECMAN problem formulation

VECMAN is characterized by two main components, the resource selector and the

energy manager. The resource selector takes the vehicles’ information (i.e., location and

computing resources) into consideration periodically (at a coarse time scale) and, based on

91

Resource Selector
Energy Manager

Road-Side Unit

(a) An area with several vehicles and RSUs.

Workload A Replica
Return ResultRequeste
r Provider

P
ro

vi
de

r

W
or

kl
oa

d
A

R
ep

lic
a Cancel W

orkload A

1

11

2

2

3

4

A

B

C

D

(b) Each RSU runs the resource selector and
the energy manager locally.

Figure 5.2: A schematic set up of a VEC system.

the history of the traffic data in the coverage area and the movement behavior of vehicles,

(a) it selects the set of vehicles that can participate in resource sharing, (b) it determines the

length of the period so that each selected vehicle remains in the coverage area with a high

probability during the resource selection period. We assume that the real-time location

information of a vehicle is obtained by the on-board global position system (GPS). The

resource selector, based on the history of traffic data and the current location of a vehicle,

determines the probability that the vehicle stays in the coverage area to decide whether or

not to engage that vehicle in the resource sharing. At a finer time scale than the resource

selector, the energy manager, decides the vehicles’ state (i.e., requester or provider), the

number of replicas for each requester’s workload, and the replicas’ allocation on provider

vehicles. The resource selector and the energy manager run at different time scales, and

thus the problems they solve can be treated as separate.

5.2.1 Illustrative example

Figure 5.2a shows the distributed architecture of a VEC system implementing VEC-

MAN. Each vehicle is assigned to the nearest RSU. Each RSU runs the resource selector

92

and the energy manager locally. Figure 5.2b shows the coverage area of an RSU, with four

assigned vehicles. In this example, the resource selector selects vehicles A, B, and C to

participate in resource sharing for T units of time. Due to the high probability of leaving

the coverage area, vehicle D is not selected to participate in resource sharing. At a finer

grain, the energy manager is executed on the selected vehicles for T/Tem periods, where

Tem is the length of each energy manager period. In the first period, the energy manager (1)

selects vehicle A as a service requester and vehicles B and C as service providers. It also

determines two replicas for the request of vehicle A to be assigned on vehicles B and C. (2)

The energy manager coordinates the replicas deployment. (3) When one of the providers

returns the computation result to A (e.g., vehicle C), (4) the other providers stop the com-

putation and wait for other workloads. In the following energy manager periods, vehicle A

will host the workloads of vehicles B and C to help them lower their energy consumption.

Thus, all the vehicles can save energy over the resource selector period T .

In the following, we formulate the resource selection problem (RSP) and the energy-

aware resource management problem (ERMP) in VEC systems.

5.2.2 RSP formulation

The inputs of the resource selector are a fixed set V of vehicles that are currently located

in the coverage area, their available computing resources, and the historical information

about locations of vehicles until the current time. Based on these parameters, the resource

selector determines (a) the length of resource selection period T , and (b) the subset of

vehicles V that with a risk factor less than α stay in the coverage area for T units of time. In

fact, the goal of the resource selector is to engage as many computing resources of vehicles

as possible but at the same time guarantee that each vehicle, by participating in sharing

computing resources, can save some energy before the next invocation of the resource

selector algorithm. At that point, a new period length is determined based on the current

vehicle motion information.

We consider the number of instructions that can be executed by the CPU in a resource

93

selection period as the amount of computing resources of a vehicle. Thus, increasing the

length of the resource selection period increases the amount of computing resources of

each vehicle. However, increasing the length of the period may decrease the probability

that the vehicle remains in the RSU coverage area, which leads to a lower expected value

of the total computing resources. Thus, to maximize the amount of computing resources,

the resource selector should consider a trade off between the length of the period and the

probability that the vehicles stay in the coverage area during the resource selector period.

Thus, the objective of the resource selector is to find a subset of vehicles V over all possible

subsets of vehicles Λ so that the total amount of computing resources for TV units of time

is maximized:

max
V∈Λ

∑
i∈V

Mi · TV (5.1)

where Mi is the Millions Instructions Per Second (MIPS) for the CPU of vehicle i, and TV

is the maximum number of units of time that vehicles in V stay in the coverage area with

a risk factor less than α. In other words, TV is the maximum number of units of time that

satisfies the following risk factor constraint for all vehicles in V :

p

{
TV⋂
t=1

(`ti ≤ ρ)

}
≥ 1− α, ∀i ∈ V (5.2)

where ρ is the coverage range of the RSU and `ti is a probabilistic parameter indicating

the distance of vehicle i from the RSU at time unit t. The probability distribution of `ti is

obtained based on the possible scenarios for the location of the vehicle in time unit t. Note

that, to increase the readability, in the rest of the chapter, we use T instead of TV when we

refer to the currently selected time duration of the resource selector.

94

5.2.3 ERMP formulation

The inputs of the energy manager are T , the length of resource selector period, V , a

fixed set of vehicles that with a risk factor less than α stay in the coverage area, the history

of vehicle locations until the current time, and the workload characteristics. We assume

that the RSU runs the energy manager for Fe periods within T units of time. The length

of each period is fixed and is denoted by Tem, which can be set to a value that satisfies the

Quality of Service (QoS) for the workloads execution, i.e., every workload should com-

plete its execution within Tem units of time. Thus, the energy manager, at each one of

the Fe invocations, decides the vehicle’s state and the number of replicas for each selected

requester so that, after Fe periods, the vehicles’ energy consumption is minimized without

violating the QoS requirements. In other words, we want to ensure that each vehicle, by

participating in sharing computing resources, can save some energy before the end of the

current resource selector period. Next, we identify two important constraints, i.e., limited

capacity and risk factor, define the energy consumption model of the vehicles, and finally,

formulate the ERMP.

Capacity Constraints. We characterize the capacity of vehicle i by Ci = {C1i, . . . , CQi},

where Q is the number of resource types. We consider three resource types (i.e., Q = 3)

indexed by h: CPU (h = 1), memory (h = 2), and storage (h = 3). Each vehicle i has

a limited capacity Chi for each resource type h. In addition, we characterize the workload

of vehicle i by ri = {r1i, . . . , rQi}, where rhi is the amount of resource of type h needed

to complete the execution of the workload. Thus, r1i is the number of CPU instructions

(in millions), r2i is the amount of memory, and r3i is the amount of storage needed by

the workload of vehicle i. For each vehicle i selected as a provider, the total amount of

resources requested cannot exceed its available capacity:

∑
j∈Si

r′hj ≤ Chi, ∀i ∈ P , ∀h (5.3)

95

where r′hj is the amount of resource of type h of vehicle j partially offloaded to provider i

(r′hj ≤ rhj), P is the set of providers, Si is the set of vehicles that have a replica of their

workload assigned to vehicle i, and Chi is the available capacity of vehicle i for resource

type h during each Tem units of time.

A challenge to overcome is how to calculate the CPU capacity C1i in Constraint (5.3).

We define the CPU capacity based on the Millions of Instructions (Mi) that can be executed

within an energy manager period minus the number of CPU instructions required for the

local workload:

C1i = Mi · Tem − r1i (5.4)

For a simple single-core CPU, the value of Mi is approximated by a function of the CPU

frequency as follows:

Mi = ϑi · fi + θi (5.5)

where ϑi and θi are estimated parameters, and fi is the CPU frequency of each CPU. In

order to ensure a good QoS, the required time to run the local workload r1i must be shorter

than the energy manager period duration Tem, which can be set as desired:

r1i

ϑi · fi + θi
≤ Tem (5.6)

Given the discrete frequency levels available in every CPU, each vehicle i, to achieve

the required QoS at minimum energy consumption, must set (as default) the minimum

frequency level fi that satisfies the following constraint:

fi ≥
r1i

ϑi · Tem
− θi
ϑi

(5.7)

96

As a result, the total CPU capacity C1i in Equation (5.3) can be calculated as follows:

C1i = (ϑi · fi + θi) · Tem − r1i (5.8)

As a result, the capacity constraints in Equation (5.3) enable the energy manager to place

extra workload on provider vehicles without affecting their default CPU frequency.

Risk Factor Constraint. Despite the resource selector efforts to provide a fixed set of

vehicles within each resource selector period, it may happen that some vehicles change

their location in any of the Fe energy manager periods. Thus, because the future vehicle

locations can only be predicted, we need to ensure that, with some level of confidence

defined by a risk factor, each requester has a good connection with at least one provider

during each period. To formulate this constraint, we first need to find the minimum distance

between each requester and providers. In particular, for every selected requester, we want

to have at least one provider within a reliable distance δ > 0. On the other hand, the

location of vehicles is non-deterministic and thus it may be affected by estimation errors.

As a result, we must make sure that the probability of having at least one provider within

a reliable distance is greater than a satisfaction factor (1 − β). This constraint can be

expressed as follows:

p

{
min

j∈P |i∈Sj

lij ≤ δ

}
≥ 1− β, ∀i ∈ V \ P (5.9)

where lij is the average distance between vehicle i and vehicle j in the current period, and

P is the set of providers.

Energy Consumption Model. The computing system energy consumption for vehicle i

is mainly characterized by two components, i.e., the computational and the transmission

energy consumption. The computational energy consumption includes dynamic energy

consumption and the idle energy consumption. The idle energy consumption is the basic

power consumption in Tem units of time. The dynamic energy consumption is the power

97

consumption for executing the requests which is proportional to the execution time of the

requests and the third power of the CPU frequency [116]. According to Equation (5.6) and

assuming that that all instructions are running at the same frequency, the execution time

of request r′j on provider i is r′1j
ϑi·fi+θi . Thus, the extra energy consumption by executing

request r′j on provider i is λi · r′1j
ϑi·fi+θi · f

3
i , where λi is an estimated parameter. Thus, the

total extra computational energy consumption on provider i is:

Eextra
i = λi · f 3

i ·
∑

j∈Si
r′1j

ϑi · fi + θi
, ∀i ∈ P (5.10)

On the other hand, if vehicle i is selected as a requester, by offloading r′i, the default

frequency of vehicle i may change from fi to f ′i, with fi ≥ f ′i. Thus, the energy saving of

the vehicle is equivalent to:

Esave
i = λi · f 3

i ·
r1i

ϑj · fi + θi
− λi · f ′3i ·

r1i − r′1i
ϑi · f ′i + θi

, (5.11)

∀i ∈ V \ P

The transmission energy consumption is proportional to the transmission latency which

depends on the ratio between the request size and the data rate between the requester and

the provider [117]. On the other hand, the data rate is proportional to the bandwidth be-

tween the requester and the provider. Thus, the transmission energy consumption is pro-

portional to the ratio of the request size and the bandwidth between the requester and the

provider. Thus, the transmission energy consumption of vehicle i to receive a request r′j

from vehicle j is calculated as the ratio of the request size dj and the average bandwidth bij ,

i.e., ωi · djbij . The parameter ωi is the energy consumption of vehicle i to receive one unit of

data. Therefore, the total energy consumption of provider i to receive requests from other

98

vehicles is:

Erec
i =

∑
j∈Si

ωi ·
dj
bij
, ∀i ∈ P (5.12)

Similarly, the energy consumption of vehicle i to send its request to other vehicles is:

Esend
i =

∑
j|i∈Sj

ψi ·
di
bij
, ∀i ∈ V \ P (5.13)

where ψi is the energy consumption of vehicle i to send one unit of data to the network.

In order to keep track of the total energy saved and the extra energy spent by each ve-

hicle when selected as requesters or providers, respectively, we define the energy balance.

In each energy manager period, the energy balance of vehicle i, Eblnc
i , is calculated based

on the energy balance Eblnc′
i obtained from the previous periods, the transmission energy,

and the energy savings/extra energy consumption in the current period. In practice, a neg-

ative energy balance means energy savings compared to the case of always executing the

workload locally. Given the above models, the energy balance of a provider in the current

energy manager period is calculated as follows:

Eblnc
i = Eblnc′

i +
∑
j∈Si

ωi ·
dj
bij

+ λi · f 3
i ·
∑

j∈Si
r′1j

ϑi · fi + θi
, ∀j ∈ P (5.14)

Similarly, the energy balance of a requester in the current energy manager period is

calculated as follows:

Eblnc
i = Eblnc′

i +
∑
j|i∈Sj

ψi ·
di
bij
−
(
λi · f 3

i ·
r1i

ϑi · fi + θi
(5.15)

−λi · f ′3i ·
r1i − r′1i
ϑi · f ′i + θi

)
, ∀i ∈ V \ P

99

Table 5.1: Notation
Notation Description
T Duration of the resource selection period
Fe Number of energy manager periods
Tem Duration of the energy manager period
V Set of vehicles in the coverage area
V Set of participating vehicles.
α, β Risk factor
r′hi Amount of type h resource requested by vehicle i
lij Average distance between vehicle i and j
Chi Available capacity of resource of type h
Eblnc′
i Energy balance of vehicle i from previous period

Eidle
i Idle energy consumption of vehicle i

in an energy manager period
fi Default CPU frequency of vehicle i
di Size of the request of vehicle i
bij Average bandwidth between vehicle i and vehicle i
ψi Transmission energy to send one unit of data
ωi Transmission energy to receive one unit of data
λi, θi, γi, ϑi Estimated parameters

Formulation. The objective of the energy manager is to find a set of providers P over all

possible set of providers Π and the set of replicas Si assigned to each provider i ∈ P over

all possible replica assignments Γi so that the maximum energy balance over all vehicles is

minimized:

min
P∈Π,Si∈Γi|i∈P

max
j∈V

{
Eblnc
j

}
(5.16)

where Eblnc
j is obtained based on Equation (5.14) and Equation (5.15), subject to the ca-

pacity and risk factor constraints in Equations (5.3) and (5.9), respectively. Table 5.1 sum-

marizes the notation that we use in the chapter.

5.3 VECMAN algorithms

Because of Constraints (5.2) and Constraints (5.9) RSP and ERMP are both chance-

constrained optimization problems. As a result, they are robust to location uncertainties

of the vehicles. However, solving chance-constrained optimization problems optimally

100

Algorithm 5 VECMAN Framework
Input: ID of the RSU executing VECMAN: RSU ID

1: while true do
2: Update set of vehicles allocated to RSU ID

and their history: V , H
3: Calculate the probability vector p based on V and H
4: V, T ←I-Selector(V, p)
5: for each k ∈ [1, T

Tem
] do

6: Update current locations of vehicles V and
generate scenarios ξ based on H and T

7: S, P ←G-ERMP(V, ξ)
8: Communicate S and P to vehicles
9: end for

10: end while

usually requires computationally expensive algorithms due to the large number of scenarios

on the movement of the vehicles. To tackle this complexity, we only consider a sample of

scenarios, where each scenario represents a potential sequence of vehicles location over

consecutive energy manager periods. Then, we develop an iterative algorithm called I-

Selector to find a solution for RSP and a greedy algorithm called G-ERMP to find a

solution for ERMP in polynomial time.

An algorithmic description of the proposed VECMAN framework is given in Algo-

rithm 5. The VECMAN framework running on each RSU (each one uniquely identified by

an RSU ID) starts each vehicle management loop (Lines 2-8) by updating the set of vehi-

cles V currently within the RSU coverage area and by getting their location historyH (Line

2). The RSU coverage area is divided into multiple cells. VECMAN calculates the vector p

that gives, for each vehicle, the probability of leaving the RSU coverage area from each one

of these cells for various candidate lengths of resource selection periods (Line 3). We refer

the reader to Section 5.4.1 for more details on how p is obtained from a real dataset. Based

on V and p, the I-Selector determines the length of the next resource selection period T

and, at the same time, the subset of vehicles V that with a high probability remain in the

RSU coverage area over that period (Line 4). Then, VECMAN starts executing the energy

manager (Lines 5-8).

101

At the beginning of each one of the Fe energy manager periods, with Fe = T/Tem,

the G-ERMP algorithm updates the current locations of the participating vehicles and gen-

erates a set of possible scenarios to predict where each vehicle may be by the end of the

current energy manager period (Line 6). We refer the reader to Section 5.4.1 for more

details on how the scenarios are obtained using a real dataset. Based on these scenarios,

the G-ERMP algorithm executes to decide the vehicles’ state, the number of workload

replicas, and their allocations to the selected providers, for minimized energy consumption

while ensuring a low risk of failure and good QoS (Line 7). Then, the computed allocations

for the current energy manager period are communicated to the vehicles (Line 8). These

steps (Lines 6-8) are repeated every Tem units of time for Fe times, after which VECMAN

starts a new vehicle management loop (Lines 2-8).

5.3.1 I-Selector algorithm

The I-Selector algorithm is given in Algorithm 6. The inputs of the algorithm are the

set of vehicles V with their initial location in the coverage area, and the vector p calculated

as described in the previous section. The output of the algorithm consists of the set of

participating vehicles V and the length of the resource selection period T .

I-Selector starts with a small value of T corresponding to the minimum energy man-

ager period Tem (Line 1). It increases this value iteratively until it obtains a length of period

that maximizes the amount of available computing resources (Lines 5-14). Since the ob-

jective function of RSP (i.e., Equation 5.1) is a bitonic function of T (the total available

capacity first increases by the increase of T , and then decreases) we can guarantee that

I-Selector finds the optimal length for resource selection period for the given sample of

scenarios. In each iteration, for the current value of time period T , I-Selector calls find-

satisfied-set procedure to obtain the set of vehicles Vnew that with a risk factor less than

α stay in the coverage area for T units of time (Line 6). The input of find-satisfied-set

procedure is the set of vehicles V with their initial locations and the vector pT = {pTa }

that gives the probability of leaving the coverage area from each cell a within T units of

102

Algorithm 6 I-Selector
Input: Set of vehicles: V

Vector of probabilities of leaving the coverage area: p
1: T ← Tem
2: R← 0
3: V ← ∅
4: stop← false
5: while not stop do
6: Vnew ←find-satisfied-set(V, pT)
7: Rnew =

∑
i∈Vnew

Mi · T
8: if Rnew ≥ R then
9: R← Rnew

10: V ← Vnew
11: T ← T + Tem
12: else
13: stop← true
14: T ← T − Tem
15: end if
16: end while
Output: V, T

time. As the output, the procedure returns the set of vehicles Vnew, where for each vehicle

in Vnew with an initial location a, the probability of leaving the coverage area is less than α

(i.e., pTa < α). Then, I-Selector computes Rnew, the computing resources of vehicles in V

(Line 7). If there is no improvement in the amount of available resources, the algorithm

stops; otherwise, it increases the value of T and continues this procedure as long as the

amount of available resources for the new time period T is higher than that for the previous

time period.

Complexity Analysis. The time complexity of I-Selector is O(V · Fe · |ξT |). The main

part of I-Selector consists of the loop in Lines 5-14, which executes T
Tem

= Fe times. In

each iteration, we call satisfied-set which takes O(|ξT | ·V) time. Therefore, the total time

complexity of I-Selector is O(V · Fe · |ξT |).

5.3.2 G-ERMP algorithm

G-ERMP operates in two phases using various scenarios to handle the chance con-

straint. Each scenario assumes a deterministic (i.e., known) location for vehicles. In the

103

first phase, the algorithm picks a random sample of scenarios generated based on a set

of probable locations for the vehicles. Therefore, the algorithm solves the deterministic

version of ERMP to obtain a solution for each scenario. Because the location within a

scenario is known, this solution provides a single replica for each requester vehicle. Then,

in the second phase, based on the assignments obtained for each scenario, the algorithm de-

termines the number of replicas for each vehicle as well as their replica assignment so that

Constraint (5.9) is satisfied with a probability higher than (1 − β). However, the problem

solved in the first phase of G-ERMP belongs to the class of packing problems, which are

known to be NP-hard. Therefore, it is not solvable in polynomial time, unless P=NP. Thus,

we first develop a greedy algorithm called GD-ERMP, that solves the problem associated

with the first phase of G-ERMP for a selected scenario. Then, we describe the complete

G-ERMP algorithm, which examines the solutions provided by GD-ERMP to finalize the

selection of the providers and the number of replicas.

GD-ERMP algorithm

In order to minimize the maximum energy balance of vehicles, GD-ERMP analyzes the

energy balance of each vehicle at the beginning of each period: vehicles with a low energy

balance are more likely to be selected as the providers for the current period. However, if

the decision is made only based on the energy balance, we might obtain a solution in which

providers are distributed very irregularly. Thus, the decision maker needs to consider a high

number of providers in the system so that all the selected requesters are covered within

a reliable distance. In other words, making decisions only based on the energy balance

may increase the number of providers. Thus, the leftover CPU capacity may not be used

efficiently. To solve this problem, our algorithm considers both the location of the vehicles

and their energy balance.

The algorithm defines a set of providers P , which is updated in an iterative manner.

The algorithm starts with a minimum possible number of providers, i.e., |P | = 1. This

value increases in the next iteration if the current providers are not able to provide a good

104

Algorithm 7 GD-ERMP

Input: Set of vehicles: V = {(Ci, ri, Eblnc′i)}
Scenario for the location of vehicles: ε

1: i← argminj∈V E
blnc′
j

2: P ← {i}
3: stop← false
4: while not stop do
5: stop← true
6: Si ← ∅ ∀i ∈ P
7: for j ∈ V − P do
8: i← find-provider(j, P, ε)
9: if i > 0 then

10: Si ← Si ∪ {j}
11: else
12: i← argmaxj∈V−P (l(j,P,ε)

l̄
− Eblnc′

j

Ē
)

13: P ← P ∪ {i}
14: stop← false
15: break
16: end if
17: end for
18: end while
Output: S, P

connectivity for all the requesters or they do not have enough resources to process the

workloads. GD-ERMP stops when all requesters are allocated within a reliable distance.

Algorithm 7 shows the pseudo-code of GD-ERMP. It considers both the energy balance

and the location of vehicles to decide the set of providers P and the assignment of the

replicas. The inputs are the vector of vehicles with their request type ri, capacity Ci,

and their current energy balance Eblnc′
i , and a scenario ε for the location of vehicles in

the current energy manager period. The outputs are the set of providers P and the set of

replicas {Si} allocated to each provider i.

In order to determine the providers, GD-ERMP first picks a vehicle with the minimum

energy balance, and puts it in the set of providers P (Lines 1-2). Then, in an iterative

manner, other providers are added to P . For each vehicle j that is not selected as a provider,

the algorithm calls find-provider to find the nearest provider i that (i) has enough capacity

to serve the vehicle; (ii) is within a reliable distance, i.e., lij ≤ δ; (iii) works at a lower

105

frequency; and (iv) by offloading a part of workload of vehicle j to it the system achieves

energy savings (Line 8). To determine the amount of offloading for vehicle j, find-provider

considers the maximum possible amount of workload r′j that can be processed on the

remaining capacity of provider i. Then, based on Equations (5.10-5.13), it obtains the

amount of energy saving for the system by this offloading. The positive energy saving

means that provider i can serve the request of vehicle j; otherwise, the algorithm considers

the possibility of offloading to other providers. If this procedure does not find such a

provider, it returns a negative value; otherwise it returns the index of the provider. Thus,

if find-provider finds such a provider, the requester is assigned to that provider and the

replica set of that provider is updated (Lines 9-10). If the algorithm cannot allocate a

request within a reliable distance, the current set of providers is not enough to satisfy all

the requests. Hence, the algorithm needs to add another vehicle to the set of providers.

The next provider is chosen so that it has a relatively low energy balance and it is far away

from the already selected providers, which helps covering more requesters with a minimum

number of providers. This strategy is implemented in Lines 12-13, where the algorithm

picks a vehicle that has the maximum value of
(
l(j,P,ε)

l̄
− Eblnc′

j

Ē

)
, where l(j, P, ε) is the

minimum distance of vehicle j from the set of selected providers under the scenario ε. l̄

and Ē are the average distance over vehicles and the average energy balance over vehicles,

respectively. The above procedure is repeated until all requests are allocated to providers

that are within a reliable distance.

Complexity Analysis. The time complexity of GD-ERMP is O(|V|3). The main part of

GD-ERMP consists of the loop in Lines 4-14, which executes |P | times. In each iteration,

for each non-provider vehicle, finding the nearest provider among j providers will take

O(j) time. Therefore, the total time complexity of GD-ERMP is
∑|P |

j=1(|V| − j) · j =

O(|V|3)

106

G-ERMP algorithm

Algorithm 8 shows the pseudo-code of G-ERMP. The algorithm has as input the set

of scenarios, ξ, the vector of vehicles with their request size, ri, and their capacity, Ci.

The output consists of the set of providers P and the set of replica’s assignments S for

the current energy manager period. The main idea of G-ERMP is to create a graph based

on the replica allocations obtained for each scenario by the GD-ERMP algorithm. Each

vertex of this graph represents a vehicle; each edge of the graph indicates a requester j to

provider i assignment, weighted by the number of scenarios in which a request of j has

been allocated to i by the GD-ERMP algorithm. Then, the algorithm partitions this graph

into the set of providers and the set of requesters, and determines the number of replicas

for each requester. This partitioning is done so that, for each vehicle, Constraint (5.9) is

satisfied for more than (1− β) · |ξ| scenarios.

G-ERMP starts with an empty set of providers P and empty set of replicas’ assign-

ments (Lines 1-2). In each iteration of the algorithm, these sets will be updated. Also, we

define vector σ = {σi} to store the number of scenarios in which Constraints (5.9) are satis-

fied for each vehicle i (Line 3). We define Γ as a set of vehicles for which Constraints (5.9)

are satisfied. G-ERMP initializes Γ with the empty set (Line 4). Sets P̃ and S̃ = {S̃i} are

used to save the set of providers and the set of replicas obtained for each scenario by GD-

ERMP (Lines 5-6). G-ERMP creates a graph with |V| vertices. Each vertex represents a

vehicle and each edge indicates a request-provider assignment. The weight of an edge from

vertex j to vertex i is denoted by wji and is defined as the number of scenarios in which

vehicle j is assigned to vehicle i. The indegree of vertex i, i.e., the total weight of edges

adjacent to vertex i, is stored in vector indeg = {indegi} (Lines 7-10).

In order to find the minimum number of providers, in each iteration, G-ERMP selects

the vehicle as the provider that has received the maximum number of requests from the

various scenarios. Therefore, it choses the vertex with the maximum indegree as a provider

(Line 12). Then, it updates the set of providers (Line 13). When a vehicle is selected as

107

Algorithm 8 G-ERMP
Input: Set of vehicles: V = {(Ci, ri)}

Set of scenarios :ξ
1: P ← ∅
2: Si ← ∅ ∀i ∈ V
3: σi ← 0 ∀i ∈ V
4: Γ← ∅
5: for each ε ∈ ξ do
6: (S̃, P̃)←GD-ERMP(V ,ε)
7: for each i ∈ P̃ do
8: for each j ∈ S̃i do
9: wji ← wji + 1

10: indegi ← indegj + 1
11: end for
12: end for
13: end for
14: while |Γ| < V do
15: j ← argmaxi∈V\P indegi
16: P ← P ∪ {j}
17: Γ← Γ ∪ {j}
18: for each i ∈ P do
19: if j ∈ Si then
20: Si ← Si − {j}
21: for each k ∈ V \ Γ do
22: if wki > 0 and available(k,i,S) then
23: Si ← Si ∪ {k}
24: σk ← σk + wki
25: if σk > (1− β) · |ξ| then
26: Γ← Γ ∪ {k}
27: end if
28: end if
29: end for
30: end if
31: end for
32: for each g ∈ V \ Γ do
33: if wgj > 0 and available(g,j,S) then
34: Sj ← Sj ∪ {g}
35: σg ← σg + wgj
36: if σg > (1− β) · |ξ| then
37: Γ← Γ ∪ {g}
38: end if
39: end if
40: end for
41: end while
Output: S, P

108

a provider, it runs its requests locally, which means that, for this vehicle, Constraint (5.9)

is automatically satisfied. Thus, it adds the current provider to the set Γ (Line 14). The

algorithm then updates the replica assignment of vehicles in two steps. In the first step,

since vehicle j is selected as a provider, the algorithm removes all the previous assignments

from vehicle j on any provider. In fact, the algorithm checks if a request from vehicle j has

been assigned to a provider i, it removes that assignment (Lines 16-17). Furthermore, since

the remaining capacity of vehicle i is increased, it might be able to serve more requests.

Thus, for each vehicle k ∈ V −Γ willing to be assigned to vehicle i, the algorithm updates

the assignment if vehicle i has enough capacity. It also updates σ for vehicle k. If σk

is greater than (1 − β) · |ξ|, the algorithm adds vehicle k to Γ. Therefore, the algorithm

will not generate any further replica for that vehicle (Lines 18-23). In the second step,

the algorithm assigns requests from each vehicle g willing to be assigned to vehicle j. It

updates the assignment if vehicle i has enough capacity. It also updates σ for vehicle g.

If σg is greater than (1 − β) · |ξ|, the algorithm adds vehicle g to Γ (Lines 24-29). The

algorithm continues this procedure until all the vehicles are added to set Γ.

Complexity Analysis. To investigate the time complexity of G-ERMP, we analyze the

time complexity of the two main parts of the algorithm. In the first part, G-ERMP calls

GD-ERMP for each scenario. Therefore, as analyzed in the previous section, the time

complexity of the first part is O(|ξ| · |V|3). In the second part, G-ERMP builds a graph

based on the solution obtained in the first part. The time complexity of the second part

mainly depends on the loop in Lines 11-29, which executes O(|V|) times. The main part

of the loop consists of the loop in Lines 15-23 which executes O(|P | · (|V \ Γ|)) times.

Therefore, the time complexity of the second part is O(|V|3). As a result, the total time

complexity of G-ERMP is O(|ξ| · |V|3 + |V|3) = O(|ξ| · |V|3)

5.3.3 G-ERMP execution: example

Here, we provide an example to show how the G-ERMP algorithm works. We con-

sider an area with six vehicles. We assume that there are three scenarios for the predicted

109

A

B C

D E

F

(a)

A

B C

D E

F

(b)

A

B C

D E

F

(c)

Figure 5.3: Example: A problem instance with six vehicles and three scenarios.

A

B C

D E

F

2 1
1

1

1
1

1 1

1

(a)

A

B C

D E

F

2 1
1

1

1
1

1 1

1

(b)

A

B C

D E

F

2 1
1

1

1
1

1 1

1

(c)

A

B C

D E

F

2 1
1

1

1
1

1 1

1

(d)

Figure 5.4: Example: Replica placement obtained by G-ERMP

locations of the vehicles. In this example, we set β = 0. Therefore, a feasible solution is

obtained when for each vehicle Constrain (5.9) is satisfied for all scenarios. In Figure 5.3,

we show the three solutions obtained by GD-ERMP for each scenario. In the first scenario

(Figure 5.3a), the request from vehicles B, C, and D are assigned to A and the request

from E is assigned to F. In the second scenario (Figure 5.3b), requests from B, E, and F

are assigned to D and the request from A is assigned to C. In the third scenario (Figure

5.3c), requests from B, F, and E are assigned to A and request from C is assigned to D.

Now, we show how G-ERMP determines the set of requesters, the set of providers, and

the replica assignment based on these solutions. Figure 5.4a shows the graph obtained by

the solutions for each scenario. The weight on an edge from i to j indicates the number

of scenarios that recommend an assignment from vehicle i to j. For example, the weight

110

on edge (B,A) is two because in two scenarios (Figures 5.3a and 5.3c), the request from

vehicle A is assigned to B.

Figure 5.4b shows the first iteration of the algorithm. In this iteration, vehicle A, is

selected as a provider because it has the maximum indegree. Replicas from B, D, and

C are respectively assigned to A. The dotted arrows in the figures are used to highlight

the edges that are not used anymore to compute the nodes’ indegree. Note that due to the

limited capacity, replicas from F are not assigned toA. Figure 5.4c shows the next iteration

of the algorithm. In this iteration, vehicle D, which has the second-highest indegree, is

selected as a provider. Thus, a replica from B and C is allocated to D. Again, due to the

the limited capacity, vehicle F is not assigned to D. However, since D is a provider now,

its previous assignment on A is removed and the capacity of A is updated. Now, there is

enough capacity for A to serve replicas from F . Therefore, its corresponding edges are

marked with dotted arrows. In the last iteration (Figure 5.4d), the last unsatissfied request

from E is served by F , which is marked as provider since its indegree is higher than that

of E.

5.4 Experimental analysis

In this section, we describe our experimental setup and then analyze the experimental

results.

5.4.1 Experimental setup

Computing Setup. Table 5.2 shows the parameters used to generate instances in our anal-

ysis. U [x, y] indicates the uniform distribution within the interval [x, y], and N(x, y) indi-

cates the normal distribution with mean x and variance y. We have tested VECMAN for

various values of Tem but observed little variation on its general behavior. Thus, due to

limited space, in the rest of the section we show the result only for Tem = 10 seconds. We

assume that for each type of resources, the capacity of vehicles is in the same range and

does not vary significantly. Therefore, we use the normal distribution for the memory and

111

Table 5.2: Distribution of parameters

Parameter Distribution/Value Parameter Value

fi

light: U [700, 1000] r2i U [100, 1000]

moderate: U [1100, 1400] r3i U [100, 1000]

heavy: U [1500, 1900] µ 3375

α, β 0.1 λi 0.00125

ωi 0.2 φi 0.2

di
light: U [500, 1000] θi −4558.52

moderate: U [1000, 5000] ϑi 7.683

heavy: U [5000, 9000] γi −0.741625

C2i N [5000, 500] Tem 10

C3i N [5000, 500]

storage capacity of vehicles. According to Equation (5.8), the CPU capacity of a vehicle

depends on its frequency and the size of the local workload. We use as an example CPU

ARM Cortex A57 that has 13 frequency levels from 700 MHz to 1, 900 MHz. We profile

the Cortex A57 in terms of MIPS and power consumption for each frequency level to get

the model parameters in Equations (5.8) and (5.10). We define three types of instances

with light, moderate, and heavy workloads. For light workloads, the default frequency

varies from 700 to 1000, while for moderate and heavy cases, it varies from 1100 to 1400

and 1500 to 1900, respectively. For all instances the required time to execute workloads is

uniformly drawn from [1, 10000] milliseconds. Thus, by using Equation (5.6), the number

of CPU instructions for each instance is r1i = (ϑi · fi + θi) · U [1,10000]
1000

and the CPU capacity

is C1i = (ϑi ·fi+θi) ·Tem−(ϑi ·fi+θi) · U [1,10000]
1000

. According to this equation and since the

execution time of all types of workloads is in the same range, the expected CPU capacity

of vehicles with heavy workloads is higher than that of lighter workloads.

We estimate the transmission energy parameters ωi and φi based on the analysis pro-

vided in [118]. We also set the value of µ to 27Mb/s (equivalent to 3.375MB/s) which

is the maximum data transmission in DSRC networks [119]. Since the length of energy

manager period is 10 seconds, the maximum size of data that can be transmitted within an

energy manager period in a unit of distance is 33.75MB. Considering the computational

112

(a) Distribution of vehicles over a re-
gion of Cologne city.

(b) Distribution of vehicles over the
most congested area.

(c) An example of vehicles’ mobility
model.

Figure 5.5: Scenario generation model.

time needed to execute workload on vehicles within each Tem, to guarantee QoS, we define

three problem instances with light, moderate, and heavy amount of data. In these instances

the size of data varies from 0.5MB to 9MB.

RSU Coverage Area Setup. We use the dataset of vehicular mobility in the city of

Cologne, Germany [115]. The dataset contains the traces of vehicles over a region of 400

square kilometers during the 24 hours of a working day with a granularity of one second.

Due to the large amount of data in the dataset, we generate vehicle mobility scenarios us-

ing only data during the rush hour (i.e., 7:30am-8:30am) to stress-test VECMAN when

the maximum number of vehicles are in traffic. We assume that the coverage range of the

RSU is 1 kilometer, which is similar to the radius of the DSRC [110]. Thus, we consider a

2 kilometers by 2 kilometers area of Cologne that has the heaviest traffic during the selected

rush hour and assume the RSU is at the center of this area. For simplicity, we consider the

area as a two-dimensional grid of 20× 20 cells in which the size of each cell is 100 meters

113

by 100 meters. Figure 5.5a shows the traffic over the city of Cologne during rush hour and

Figure 5.5b shows the traffic of the most congested area selected for our tests. We observe

that on average, in every second, there are 720 vehicles in the RSU coverage area. Thus,

we set the number of vehicles V that are initially in the coverage area to 720. For each

cell of the RSU coverage area, we obtain the average number of vehicles that are located

in that cell. We use this number as a probabilistic parameter to initialize the distribution of

vehicles across the coverage area.

I-Selector Probability Vector. According to the I-Selector Algorithm, we need to con-

sider various lengths of resource selection periods to determine the length that maximizes

the objective function (i.e., Equation 5.1). For each candidate length T , for each cell in the

RSU coverage area, and given the vehicles initial locations when the I-Selector is invoked,

we obtain the probability for each vehicle to leave the RSU coverage area before T sec-

onds. For this purpose, we consider the vehicles’ location records for each T seconds time

intervals in the dataset. Based on these records, we obtain the total number of vehicles that

are initially located in each cell, but they leave the coverage area by time slot T . For each

cell, we then divide this number to the total number of vehicles that are initially located in

the cell, which is the probability for each vehicle in each cell of leaving the RSU coverage

area by the end of T .

Scenario Generation for G-ERMP. We generate scenarios for the future locations of ve-

hicles based on the current location of vehicles and the movement probabilities of vehicles

between the cells of the grid area. To determine the probability that a vehicle moves from

one cell A to cell B in each energy manager period, we consider the number of movements

from cell A to cell B divided by the total number of departures from cell A. Figure 5.5c

shows the movement probability from the cell marked with X to other cells as a heat map.

The red square shows the RSU coverage area. In this example there is a low probability a

vehicle will leave the RSU coverage area. These probabilities are then used to generate the

114

various possible scenarios.

Performance Metrics. The performance of VECMAN is evaluated by computing the per-

centage of total energy savings, which is defined as the ratio between the total energy sav-

ings of vehicles and the total baseline energy consumption (i.e., vehicles run their requests

locally).

ES(%) = 100 ·
∑

i∈V\P (ϑi · fi + θi) · ni∑
i∈V(ϑi · fi + θi) · ni

(5.17)

To evaluate the fairness of VECMAN, we determine the Coefficient of Variation (CV)

over energy balance of the vehicles. A lower value of CV means a more fair distribution

of requests. CV is defined as the ratio of the standard deviation of Eblnc
i over the average

energy balance across vehicles Ē,

CV =

√
1
V
∑V

i=1(Eblnc
i − Ē)2

Ē
(5.18)

G-ERMP and I-Selector are implemented in C++ and executed on an Intel 1.6GHz

Core i5 with 8 GB RAM.

5.4.2 Experimental results

In this section, we first investigate the impact of the length of resource selection pe-

riod on the fairness and the energy balance of vehicles. We show that the length obtained

by I-Selector algorithm yields a fair distribution of workloads and a low energy balance

among the vehicles compared to other possible lengths of resource selection period. Then,

we investigate the performance of the VECMAN compared to the baseline that executes

workload of each vehicle locally for the light, moderate, and heavy workload instances.

Next, we investigate the performance of VECMAN compared to the baseline for instances

with light, moderate, and heavy data transmission sizes. Finally, we investigate the scal-

ability of VECMAN compared to a baseline that only offloads vehicles’ workload to the

115

20 40 60 80 100 110 120 140 160
T

0

20

40

60

80

100

120

140

160

Ve
hi

cle
s w

ith
 n

eg
at

iv
e

ba
la

nc
e(

%
)

Light workload
Moderate workload

Heavy workload

(a) Percentage of vehicles with a nega-
tive energy balance.

20 40 60 80 100 110 120 140 160
T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

CV

Light workload
Moderate workload

Heavy workload

(b) Coefficient of Variation (CV) of en-
ergy balance.

Figure 5.6: Performance for various lengths of the resource selection period.

local RSU while changing the number of vehicles .

Impact of the resource selector

We run the I-Selector algorithm on the set of vehicles that are initially located in the

coverage area. To investigate the efficiency of the resource selection, we compare the

fairness and energy balance of the participating vehicles obtained for various lengths of

resource selection period. We vary the value of T from 20 seconds to 160 seconds. For

each length T , we obtain the participating vehicles who for the next T units of time stay

in the area with probability not less than 1 − α and periodically execute our G-ERMP

algorithm using the selected Tem = 10 seconds. For fairness of comparison, we run all the

experiments over a fixed time interval (200 seconds) and then, for each baseline, average

the results across resource-selection intervals.

Figures 5.6a and 5.6b show the average percentage of vehicles with negative energy

balance and average coefficient of variation at the end of each resource selection period,

respectively. As the figures show, the optimal resource selection period that ensures both

fairness and high energy savings for most participating vehicles is T = 110 seconds, which

is also the period selected by the I-Selector algorithm of VECMAN. The corresponding

number of vehicles selected for participation is 374. A higher energy unbalance across

participating vehicles is observed for T < 110 and T > 110, specially for heavy work-

load type. Specifically, when T < 110 the energy manager runs fewer times during each

116

resource selection period, therefore giving no time to some participating vehicles to be-

come both requester and provider before the period expiration. As a result, during each

resource selection interval some vehicles may have been only in requester mode, thus en-

joying energy savings, while some others may have been only in provider mode, which

leads to no energy savings, i.e., unfairness. On the other hand, when T > 110 the number

of vehicles that are likely to remain in the RSU coverage area and are therefore selected

for participation decreases, which leads to a lower amount of shared resources during each

resource selection period. This low resource availability leads to a higher imbalance in

energy savings across vehicles because a fewer number of workloads can be placed on the

lower number of available providers.

These experiments show that the I-Selector algorithm helps G-ERMP provide fair

energy savings among the participating vehicles.

Performance vs. workload types

As we discussed in previous section, the resource selector chooses 374 vehicles to

participate in resource sharing with optimal period T = 110 seconds. Here we analyze

the performance of VECMAN by considering these vehicles and run the G-ERMP in 11

energy-manager periods. We consider three sets of workload instances: light, moderate,

and heavy. In these instances, the size of transmission data of vehicles is moderate. Fig-

ure 5.7a shows that the average execution time of G-ERMP for each problem instance is

less than 0.2 second, which is negligible compared to the execution period of the requests

(Tem = 10 seconds). The execution times for the three types of workloads are almost the

same. For some of the periods, the execution time of G-ERMP for problem instances with

moderate workload is slightly higher than that for problem instances with heavy workload.

The reason is that for some periods, in the case of moderate workload instances, the per-

centage of providers that do not execute only their local workload is slightly higher than in

the case of high workload instances. Thus, the graph generated by G-ERMP for problem

instances with moderate workload is slightly more complex compared to the graph gener-

117

1 2 3 4 5 6 7 8 9 10 11
of periods

0

50

100

150

200

250

300

350

400

Ex
ec

ut
io

n
tim

e
(m

se
c)

Light workload
Moderate workload

Heavy workload

(a) Execution time of G-ERMP.

1 2 3 4 5 6 7 8 9 10 11
of periods

0

20

40

60

80

100

120

140

160

Ve
hi

cle
s w

ith
 n

eg
at

iv
e

ba
la

nc
e(

%
)

Light workload
Moderate workload

Heavy workload

(b) Percentage of vehicles with negative
balance.

1 2 3 4 5 6 7 8 9 10 11
of periods

0

20

40

60

80

100

120

140

160

Pr
ov

id
er

s(
%

)

Light workload
Moderate workload

Heavy workload

(c) Percentage of vehicles selected as
providers.

1 2 3 4 5 6 7 8 9 10 11
of periods

0

1

2

3

4

5

6

CV

Light workload
Moderate workload

Heavy workload

(d) Coefficient of Variation (CV) of en-
ergy balance.

1 2 3 4 5 6 7 8 9 10 11
of periods

0

10

20

30

40

50

ES
(%

)

Light workload
Moderate workload

Heavy workload

(e) Percentage of energy savings.

Figure 5.7: Performance with respect to the workload types.

ated for instances with heavy workload. As a result, the time needed to partition the graph

is slightly higher in the case of instances with moderate workloads.

As Figure 5.7b shows, the percentage of vehicles with a negative balance increases over

the periods. For all problem instances, after all periods, more than 92% of vehicles obtain

energy savings. However, for problem instances with heavy workload, we observe a higher

percentage of vehicles achieving energy savings compared to the moderate and light work-

loads. The reason is that in average, the CPU capacity of instances with heavy workload is

118

higher than that with lighter workloads (see section 5.4.1). Thus, as Figure 5.7c shows, the

percentage of providers decreases compared to the light and moderate workloads. Conse-

quently, more energy savings are achieved for these instances, as Figure 5.7e shows; and a

higher percentage of vehicles achieve energy savings. Furthermore, for problem instances

with heavy workload, as Figure 5.7d shows, the CV value is generally less than that of the

lighter workloads because fewer vehicles have to process their requests locally. This leads

to having higher vehicles achieving energy savings. On the other hand, as Figure 5.7e

shows, even for the light-workload case the vehicles can achieve about 7% more energy

savings compared to the baseline, while the moderate and heavy workloads achieve 16%

and 18% energy savings, respectively.

Note that some vehicles, e.g., 8% in the above experiments, may not achieve energy

savings in the current resource sharing period. However, they may achieve energy savings

in the next sharing periods. It is in our future work to design an algorithm that considers the

initial energy balance of each vehicle to ensure that all vehicles can achieve energy savings

over multiple resource selection periods.

These experiments show that VECMAN enables vehicles to achieve energy savings for

various workload instances.

Performance vs. data size

In this experiment, we investigate the effect of the size of transmitted data on the per-

formance of VECMAN. We consider three types of problem instances, light, moderate, and

heavy communication. We assume that the workload of the vehicles is moderate.

Figure 5.8a shows the execution time of G-ERMP for the three types of instances. As

we observe, the size of data does not affect the execution time of the algorithm. For all

instances the execution time of the algorithm is less than 0.2 seconds. Figure 5.8b shows

the percentage of vehicles with negative balance. We observe that for problem instances

with light communication more vehicles achieve energy savings compared to the moderate

and heavy communication. Figure 5.8c shows the percentage of vehicles that are selected

119

1 2 3 4 5 6 7 8 9 10 11
of periods

0

50

100

150

200

250

300

350

400

Ex
ec

ut
io

n
tim

e
(m

se
c)

Light communication
Moderate communication

Heavy communication

(a) Execution time of G-ERMP.

1 2 3 4 5 6 7 8 9 10 11
of periods

0

20

40

60

80

100

120

140

160

Ve
hi

cle
s w

ith
 n

eg
at

iv
e

ba
la

nc
e(

%
)

Light communication
Moderate communication

Heavy communication

(b) Percentage of vehicles with negative
balance.

1 2 3 4 5 6 7 8 9 10 11
of periods

0

20

40

60

80

100

120

140

160

Pr
ov

id
er

s(
%

)

Light communication
Moderate communication

Heavy communication

(c) Percentage of vehicles selected as
providers.

1 2 3 4 5 6 7 8 9 10 11
of periods

0

1

2

3

4

5

CV

Light communication
Moderate communication

Heavy communication

(d) Coefficient of Variation (CV) of en-
ergy balance.

1 2 3 4 5 6 7 8 9 10 11
of periods

0

10

20

30

40

50

ES
(%

)

Light communication
Moderate communication

Heavy communication

(e) Percentage of energy savings.

Figure 5.8: The effect of data transmission on the performance.

as providers over the energy manager periods. As the figure shows, the percentage of

providers does not change much with the increase in the data size. The reason is that the

number of providers does not depend on the size of the data transmitted by the vehicles, but

it depends on how the transmitted data size varies among the vehicles. Since in all types

of problem instances, the size of the data transmitted follows the uniform distribution, the

percentage of providers will not change. Figure 5.8d shows the CV of the energy balance

over energy manager periods. Due to the fact that, in the case of heavy communication

120

vehicles achieve energy savings in a slower manner, the CV value is higher than the CV

value for the light and moderate communication instances. However, as Figure 5.8e shows,

even for the heavy communication the vehicles achieve an average of 13% energy savings

compared to the baseline.

These experiments show that VECMAN enables vehicles to achieve energy savings for

various instances with different data sizes.

Performance vs. number of vehicles

Here, we investigate the scalability of VECMAN with respect to the number of vehi-

cles and compare it to a baseline called RSU-Base, which uses the local RSU to run the

requests of the vehicles. RSU-Base orders the vehicle requests in descending order based

on the vehicles’ energy balance and then, starting from the one with highest balance, it

allocates as many requests as possible on the RSU’s resources.

As discussed in Section 5.4.1, the estimated number of vehicles that are initially in

the coverage area is 720. But, here we vary the number of vehicles from 200 to 2000

to investigate the scalability of the algorithm. We use the scenario generation model and

resource selection setup described in Section 5.4.1 to generate problem instances. The

vehicles’ workload and the size of data is moderate. As Figure 5.9a shows, VECMAN

enables about 90% of the vehicles to obtain energy savings while RSU-Base, because

of its limited resources, cannot achieve energy savings for more than 50% of the vehicles

when there are more than 1000 vehicles. As a result, as Figure 5.9b shows, VECMAN

provides a fair distribution of the energy savings (decreasing CV value) while RSU-Base

has an unbalanced savings distribution (increasing CV value) due to the limited number of

vehicles that can offload their workload. This behavior, as Figure 5.9c shows, translates

in a stable 19% energy savings with VECMAN and a decreasing amount of savings for

RSU-Base with an increasing number of vehicles.

These experiments show that VECMAN enables vehicles to achieve energy savings

independently from the number of vehicles it manages.

121

200 400 600 800
1000

1200
1400

1600
1800

2000

of vehicles

0

20

40

60

80

100

120

140

160

Ve
hi

cle
s w

ith
 n

eg
at

iv
e

ba
la

nc
e(

%
)

VECMAN RSU-Base

(a) Percentage of vehicles with negative
balance.

200 400 600 800
1000

1200
1400

1600
1800

2000

of vehicles

0.0

0.5

1.0

1.5

2.0

2.5

CV

VECMAN RSU-Base

(b) Coefficient of Variation (CV) of en-
ergy balance.

200 400 600 800
1000

1200
1400

1600
1800

2000

of vehicles

0

10

20

30

40

50

60
ES

(%
)

VECMAN RSU-Base

(c) Percentage of energy savings.

Figure 5.9: The effect of number of vehicles on the performance.

5.5 Conclusion

In this chapter, we proposed VECMAN, an energy-aware resource management frame-

work for VEC systems with the aim of minimizing the energy consumption of the partici-

pant vehicles. We evaluated VECMAN by performing an extensive experimental analysis

on several problem instances. The results showed that the proposed framework allows vehi-

cles to achieve between 7% and 18% computational energy savings compared to a baseline

that executes workload locally and 13% energy savings compared to a baseline that offloads

vehicles’ workloads only to RSUs.

122

CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

The widespread usage of mobile devices generates an unprecedented amount of data

that often requires real-time processing. Mobile Edge Computing (MEC) is one of the

promising paradigm to provide the required infrastructure for low latency computing ser-

vices through running mobile applications at the edge of the network, where an edge can

be any computing resources of the network. In MEC, the edge nodes are widely distributed

in the network and available to all mobile users. However, compared to the cloud data

centers, edge nodes have more restricted capacity. Therefore, it might not be feasible to

run large size applications on a single edge node, and finding an efficient placement for

the components of an application on the multiple nodes is a major challenge. Another

challenge stems from the fact that mobile users change their locations dynamically and the

current assignment of an application to the edge nodes might not be the best in terms of

the costs involved. In addition to the mobility of users, the resource availability and net-

work conditions may also change dynamically. Therefore, in order to provide high quality

services with the minimum costs, the application may need to migrate from one edge/core

node to another, dynamically. When it comes to leveraging MEC for intensive computa-

tions in Electric Connected Autonomous Vehicles (eCAVs), due to the limited capacity of

RSUs, some computational tasks may experience poor Quality of Service (QoS) or even

failure. Monetization of services, that is, developing incentive schemes for mobile users

and edge providers, is another significant challenge in the development of MEC systems.

Decentralized distribution of MEC servers, heterogeneity of resource requirements, and the

competition between users to acquire high quality services make the resource allocation and

pricing in MEC systems a challenging problem.

6.1 Our contributions

To tackle the mentioned challenges and based on the current gap in the literature, we

made several contributions in the area of resource management in MEC systems. Our

123

contributions consist of designing efficient resource allocation algorithms that are suitable

for real world edge systems while considering major performance metrics such as energy

consumption and QoS. One of the problems addressed in this dissertation was the multi-

component application placement problem in MEC systems. We considered an area man-

aged by an edge provider with heterogeneous servers that periodically runs a resource man-

ager. The user requests to offload an application with a set of components. Each component

is characterized by its processing requirement and its communication with user/other com-

ponents. In this problem, the objective is to find an assignment between components and

servers, such that the total placement cost of the application is minimized. The total place-

ment cost is composed of four types of costs: (i) the cost of running a component on a

server; (ii) the relocation cost; (iii) the component-user communication cost; and, (iv) the

inter-component communication cost. We proved that the problem is NP-hard. In order

to solve the problem efficiently, we developed two algorithms, one based on matching and

local search and one based on a greedy approach. We evaluated the performance of the

proposed algorithms by an extensive experimental analysis. The experiments were driven

by two types of user mobility models, one derived from real-life mobility traces and the

other one based on the random-walk model. Our experimental results showed that the pro-

posed algorithms obtain solutions that are very close to the optimal and require very low

execution time (less than a millisecond). Also, the performance of both algorithms was

consistent under both the trace-driven mobility data set and the random walk model which

indicates that the proposed algorithms are relatively robust to the mobility behavior of

users. The results of this research are published in Proceedings of the Second ACM/IEEE

Symposium on Edge Computing (SEC-2017) [16], IEEE Transactions on Cloud Comput-

ing (TCC) [17], and the Proceedings of the International Conference on Edge Computing

(EDGE-2019) [18].

We also addressed Allocation and Pricing of Resources in MEC Systems. We devel-

oped two resource allocation and pricing mechanisms in MEC systems, where users have

124

heterogeneous requests and compete for high quality services. First, we developed a novel

auction-based mechanism that combines features from both position and combinatorial

auctions and handles heterogeneous resource requests from mobile users and heteroge-

neous types of resources. It determines envy-free allocations (i.e., allocations in which no

user can improve her utility by exchanging bids with any user with the same request for

resources) and prices that lead to close to optimal social welfare for the users. We also

proposed an LP-based approximation mechanism that does not guarantee envy-freeness,

but it provides solutions that are guaranteed to be within a given distance from the opti-

mal solution. We evaluated the efficiency of the algorithms by performing an extensive

experimental analysis. For small-size instances, we compared the solutions obtained by

the proposed mechanisms with the optimal solutions obtained by the CPLEX solver with

respect to execution time, percentage of served users, social welfare and revenue. For

large-size instances, we compared the performance of the two proposed mechanisms with

respect to the same metrics used for the analysis on small-size instances. The experimen-

tal results showed that the resource allocation obtained by the proposed mechanisms yield

near optimal solutions. In addition to the quality of solutions, the small execution time

makes the proposed mechanisms promising for deployment in EC systems. The results

of this research are published in the Proceedings of the Third ACM/IEEE Symposium on

Edge Computing (SEC-2018) [19] and in the IEEE Transactions on Parallel and Distributed

Systems [20].

Another contribution of this dissertation is designing VECMAN, an energy-aware re-

source management framework for (VEC) systems with the aim of minimizing the energy

consumption of the participant vehicles. In this study, we proposed VECMAN that man-

ages the computing nodes of connected electric vehicles for minimized energy consump-

tion. VECMAN consists of two algorithms: (i) a resource selector algorithm that runs

periodically on the local RSU and determines the set of participating vehicles as well as the

duration of resource sharing; and (ii) an energy manager algorithm that runs periodically at

125

a finer time grain within each resource sharing time period and determines the state of each

participating vehicle, i.e., requester or provider, the number of replicas for the requesters’

workloads, and the amount of requester’s workload to offload so that energy consumption

is minimized for all the participating vehicles. We evaluated VECMAN by performing

an extensive experimental analysis on several problem instances. The results showed that

the proposed framework allows vehicles to achieve between 7% and 18% computational

energy savings compared to a baseline that executes workload locally and 13% energy sav-

ings compared to a baseline that offloads vehicles’ workloads only to RSUs. The results

of this research are published in the Proceedings of the International Conference on Cloud

Engineering (IC2E-2020) [21], IEEE Transactions on Mobile Computing [22], and the Pro-

ceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking

(EdgeSys-2019) [23].

6.2 Future research

As a future research on application placement, we plan to design placement algorithms

that take into account both the users’ and providers’ economic incentives when making

placement decisions. A direct extension of this work is to consider settings in which a

subset of the components of a single application are offloaded to a single server. In the

area of the resource allocation and pricing mechanisms, we plan to design and implement

resource allocation and pricing mechanisms for edge computing systems with different

network structures. In this research, we assumed that a user is allocated either at the cloud

or edge level, but not at both. One direction for future research is to allow allocation of

a user request at both the edge and the cloud level. Another possible direction for future

research is considering a setting with multiple edge providers. We also plan to improve

VECMAN to (i) theoretically guarantee the minimum computational energy consumption

for any data transmission size, (ii) explore the possibility of collaboration between RSUs,

and (iii) allow provider vehicles to temporarily increase their default computing frequency

level.

126

REFERENCES

[1] Mobile cloud computing forum, www.mobilecloudcomputingforum.com,
(accessed October 5, 2021).

[2] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing:
Architecture, applications, and approaches,” Wireless Communications and Mobile
Computing, vol. 13, no. 18, pp. 1587–1611, 2013.

[3] M. Satyanarayanan, “A brief history of cloud offload: A personal journey from
odyssey through cyber foraging to cloudlets,” GetMobile: Mobile Comp. & Comm.,
vol. 18, no. 4, pp. 19–23, 2015.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–
23, 2009.

[5] S. Wang, G.-H. Tu, R. Ganti, T. He, K. Leung, H. Tripp, K. Warr, and M. Zafer,
“Mobile micro-cloud: Application classification, mapping, and deployment,” in An-
nual Fall Meeting of ITA (AMITA), 2013.

[6] NSF, “NSF workshop report on grand challenges in edge computing,” 2016.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the
internet of things,” in Proc. 1st Edition of the MCC Workshop on Mobile Cloud
Comp., ACM, 2012, pp. 13–16.

[8] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards a
comprehensive definition of fog computing,” ACM SIGCOMM Computer Commu-
nication Review, vol. 44, no. 5, pp. 27–32, 2014.

[9] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and chal-
lenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[10] M. Satyanarayanan, “The emergence of edge computing,” IEEE Computer, vol. 50,
no. 1, pp. 30–39, 2017.

[11] M. T. Beck, M. Werner, S. Feld, and S Schimper, “Mobile edge computing: A
taxonomy,” in Proceedings of the Sixth International Conference on Advances in
Future Internet, 2014, pp. 48 –54.

[12] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl, “Globally
distributed content delivery,” IEEE Internet Computing, vol. 6, no. 5, pp. 50–58,
2002.

www.mobilecloudcomputingforum.com

127

[13] R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang, “Toward cloud-based vehicu-
lar networks with efficient resource management,” IEEE Network, vol. 27, no. 5,
pp. 48–55, 2013.

[14] E. Farhangi Maleki, L. Mashayekhy, and S. M. Nabavinejad, “Mobility-aware com-
putation offloading in edge computing using machine learning,” IEEE Transactions
on Mobile Computing, pp. 1–1, 2021.

[15] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware application place-
ment in mobile edge computing: A stochastic optimization approach,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 31, no. 4, pp. 909–922, 2020.

[16] T. Bahreini and D. Grosu, “Efficient placement of multi-component applications
in edge computing systems,” in Proc. 2nd ACM/IEEE Symp. on Edge Computing,
2017, 5:1–5:11.

[17] T. Bahreini and D. Grosu, “Efficient algorithms for multi-component application
placement in mobile edge computing,” IEEE Transactions on Cloud Computing,
pp. 1–1, 2020.

[18] T. Bahreini, H. Badri, and D. Grosu, “Energy-aware capacity provisioning and re-
source allocation in edge computing systems,” in International Conference on Edge
Computing, Springer, 2019, pp. 31–45.

[19] ——, “An envy-free auction mechanism for resource allocation in edge computing
systems,” in ACM/IEEE Symp. on Edge Computing, 2018, pp. 313–322.

[20] ——, “Mechanisms for resource allocation and pricing in mobile edge computing
systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 3,
pp. 667–682, 2022.

[21] T. Bahreini, M. Brocanelli, and D. Grosu, “Energy-aware resource management
in vehicular edge computing systems,” in 2020 IEEE International Conference on
Cloud Engineering (IC2E), 2020, pp. 49–58.

[22] ——, “VECMAN: A framework for energy-aware resource management in vehic-
ular edge computing systems,” IEEE Transactions on Mobile Computing, pp. 1–1,
2021.

[23] ——, “Energy-aware speculative execution in vehicular edge computing systems,”
in Proc. 2nd International Workshop on Edge Systems, Analytics and Networking,
2019, pp. 18–23.

128

[24] D. Dutta, M. Kapralov, I. Post, and R. Shinde, “Embedding paths into trees: Vm
placement to minimize congestion,” in European Symposium on Algorithms, Springer,
2012, pp. 431–442.

[25] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual network em-
bedding algorithms with coordinated node and link mapping,” IEEE/ACM Trans.
Networking, vol. 20, no. 1, pp. 206–219, 2012.

[26] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mo-
bile computing,” IEEE Transactions on Wireless Communications, vol. 11, no. 6,
pp. 1991–1995, 2012.

[27] F. Berg, F. Dürr, and K. Rothermel, “Optimal predictive code offloading,” in Proc.
11th Int. Conf. on Mobile and Ubiquitous Syst.: Computing, Networking and Ser-
vices, ICST, 2014, pp. 1–10.

[28] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource and task alloca-
tion for energy minimization in mobile cloud systems,” IEEE J. on Selected Areas
in Comm., vol. 33, no. 12, pp. 2510–2523, 2015.

[29] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “A sample average approximation-
based parallel algorithm for application placement in edge computing systems,” in
2018 IEEE International Conference on Cloud Engineering (IC2E), 2018, pp. 198–
203.

[30] M. S. Elbamby, M. Bennis, and W. Saad, “Proactive edge computing in latency-
constrained fog networks,” arXiv preprint arXiv:1704.06749, 2017.

[31] R. Kaewpuang, D. Niyato, P. Wang, and E. Hossain, “A framework for coopera-
tive resource management in mobile cloud computing,” IEEE J. Selected Areas in
Comm., vol. 31, no. 12, pp. 2685–2700, 2013.

[32] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offloading and
resource optimization in proximate clouds,” IEEE Trans. Vehicular Technology,
vol. 66, no. 4, pp. 3435–3447, 2017.

[33] A. Ksentini, T. Taleb, and M. Chen, “A markov decision process-based service
migration procedure for follow me cloud,” in Proc. IEEE Int. Conf. on Comm.,
2014, pp. 1350–1354.

[34] T. Taleb and A. Ksentini, “Follow me cloud: Interworking federated clouds and
distributed mobile networks,” IEEE Network, vol. 27, no. 5, pp. 12–19, 2013.

129

[35] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung, “Dynamic ser-
vice migration and workload scheduling in edge-clouds,” Performance Evaluation,
vol. 91, pp. 205 –228, 2015.

[36] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung, “Dynamic
service migration in mobile edge-clouds,” in Proc. IFIP Networking Conf., IEEE,
2015, pp. 1–9.

[37] S. Wang, M. Zafer, and K. K. Leung, “Online placement of multi-component ap-
plications in edge computing environments,” IEEE Access, vol. 5, pp. 2514–2533,
2017.

[38] J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service function chains
with dynamic virtual network function placement in geo-distributed cloud system,”
IEEE Trans. Parallel and Distributed Systems, vol. 30, no. 10, pp. 2179–2192,
2018.

[39] Z. Zhou, Q. Wu, and X. Chen, “Online orchestration of cross-edge service func-
tion chaining for cost-efficient edge computing,” IEEE J. Selected Areas in Comm.,
vol. 37, no. 8, pp. 1866–1880, 2019.

[40] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user to cloudlet
allocation in wireless metropolitan area networks,” IEEE Trans. Cloud Computing,
vol. 5, no. 4, pp. 725–737, 2017.

[41] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms for capaci-
tated cloudlet placements,” IEEE Trans. Parallel and Distributed Systems, vol. 27,
no. 10, pp. 2866–2880, 2016.

[42] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud network design optimiza-
tion,” IEEE/ACM Trans. Networking, vol. 25, no. 3, pp. 1818–1831, 2017.

[43] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server placement in mobile
edge computing,” J. Parallel and Distributed Computing, vol. 127, pp. 160 –168,
2019.

[44] H. Zhao, S. Deng, Z. Liu, J. Yin, and S. Dustdar, “Distributed redundancy schedul-
ing for microservice-based applications at the edge,” IEEE Trans. on Services Com-
puting, 2020.

[45] S. Deng, Z. Xiang, P. Zhao, J. Taheri, H. Gao, J. Yin, and A. Y. Zomaya, “Dynam-
ical resource allocation in edge for trustable internet-of-things systems: A rein-
forcement learning method,” IEEE Trans. on Industrial Informatics, vol. 16, no. 9,
pp. 6103–6113, 2020.

130

[46] S. Deng, Z. Xiang, J. Taheri, K. A. Mohammad, J. Yin, A. Zomaya, and S. Dustdar,
“Optimal application deployment in resource constrained distributed edges,” IEEE
Trans. on Mobile Computing, 2020.

[47] Z. Xiang, S. Deng, J. Taheri, and A. Zomaya, “Dynamical service deployment and
replacement in resource-constrained edges,” Mobile Networks and Applications,
vol. 25, no. 2, pp. 674–689, 2020.

[48] Y. Mao, J. Zhang, and K. B. Letaief, “Joint task offloading scheduling and transmit
power allocation for mobile-edge computing systems,” in IEEE Wireless Comm.
and Netw. Conf., 2017, pp. 1–6.

[49] M. Chen and Y. Hao, “Task offloading for mobile edge computing in software de-
fined ultra-dense network,” IEEE J. on Selected Areas in Communications, vol. 36,
no. 3, pp. 587–597, 2018.

[50] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl, “Maui: Making smartphones last longer with code offload,” in Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services,
ACM, 2010, pp. 49–62.

[51] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation for multi-
server mobile-edge computing networks,” IEEE Trans. on Vehicular Techn., vol. 68,
no. 1, pp. 856–868, 2018.

[52] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan, “Odessa:
Enabling interactive perception applications on mobile devices,” in Proceedings of
the 9th International Conference on Mobile Systems, Applications, and Services,
ACM, 2011, pp. 43–56.

[53] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task offloading and
resource allocation for ultra-reliable low-latency edge computing,” IEEE Trans. on
Communications, vol. 67, no. 6, pp. 4132–4150, 2019.

[54] Y. Qian, L. Hu, J. Chen, X. Guan, M. M. Hassan, and A. Alelaiwi, “Privacy-aware
service placement for mobile edge computing via federated learning,” Information
Sci., vol. 505, pp. 562–570, 2019.

[55] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware application place-
ment in mobile edge computing: A stochastic optimization approach,” IEEE Trans-
actions on Parallel and Distributed Systems, 2019.

[56] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, “Joint service
placement and request routing in multi-cell mobile edge computing networks,” in
IEEE Conf. on Computer Communications, 2019, pp. 10–18.

131

[57] L. Mashayekhy, M. M. Nejad, and D. Grosu, “Physical machine resource manage-
ment in clouds: A mechanism design approach,” IEEE Trans. Cloud Computing,
vol. 3, no. 3, pp. 247–260, 2015.

[58] S. Zaman and D. Grosu, “Combinatorial auction-based allocation of virtual ma-
chine instances in clouds,” Journal of Parallel and Distributed Computing, vol. 73,
no. 4, pp. 495–508, 2013.

[59] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in cloud computing:
A randomized auction approach,” in IEEE Conf. on Computer Communications,
2014, pp. 433–441.

[60] Z. Xiong, S. Feng, D. Niyato, P. Wang, and Z. Han, “Edge computing resource
management and pricing for mobile blockchain,” arXiv preprint arXiv:1710.01567,
2017.

[61] Y. Jiao, P. Wang, D. Niyato, and Z. Xiong, “Social welfare maximization auction
in edge computing resource allocation for mobile blockchain,” in Proc. IEEE Int.
Conf. on Comm., 2018, pp. 1–6.

[62] N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, “Optimal auction for edge com-
puting resource management in mobile blockchain networks: A deep learning ap-
proach,” in Proc. IEEE Int. Conf. on Communications, 2018, pp. 1–6.

[63] L. Li, M. Siew, T. Q. Quek, J. Ren, Z. Chen, and Y. Zhang, “Learning-based priority
pricing for job offloading in mobile edge computing,” arXiv preprint arXiv:1905.07749,
2019.

[64] B. Baek, J. Lee, Y. Peng, and S. Park, “Three dynamic pricing schemes for re-
source allocation of edge computing for iot environment,” IEEE Internet of Things
Journal, 2020.

[65] Y. Chen, Z. Li, B. Yang, K. Nai, and K. Li, “A stackelberg game approach to multi-
ple resources allocation and pricing in mobile edge computing,” Future Generation
Computer Systems, 2020.

[66] A. Kiani and N. Ansari, “Toward hierarchical mobile edge computing: An auction-
based profit maximization approach,” IEEE Internet of Things Journal, vol. 4, no. 6,
pp. 2082–2091, 2017.

[67] Z. Kong, C.-Z. Xu, and M. Guo, “Mechanism design for stochastic virtual resource
allocation in non-cooperative cloud systems,” in IEEE Int. Conf. Cloud Computing,
2011, pp. 614–621.

132

[68] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A ptas mechanism for provisioning
and allocation of heterogeneous cloud resources,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 9, pp. 2386–2399, 2015.

[69] Y. Zhang, M. Li, K. Bai, M. Yu, and W. Zang, “Incentive compatible moving target
defense against vm-colocation attacks in clouds,” in IFIP Int. Information Security
Conf., Springer, 2012, pp. 388–399.

[70] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic Game The-
ory. New York, NY, USA: Cambridge University Press, 2007.

[71] S. Lahaie, D. M. Pennock, A. Saberi, and R. V. Vohra, “Sponsored search auctions,”
Algorithmic game theory, vol. 1, pp. 699–716, 2007.

[72] B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet advertising and the general-
ized second-price auction: Selling billions of dollars worth of keywords,” American
Economic Review, vol. 97, no. 1, pp. 242–259, 2007.

[73] K. Zheng, H. Meng, P. Chatzimisios, L. Lei, and X. Shen, “An smdp-based resource
allocation in vehicular cloud computing systems,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 12, pp. 7920–7928, 2015.

[74] C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, “Efficient mobility-aware task of-
floading for vehicular edge computing networks,” IEEE Access, vol. 7, pp. 26 652–
26 664, 2019.

[75] Z. Jiang, S. Zhou, X. Guo, and Z. Niu, “Task replication for deadline-constrained
vehicular cloud computing: Optimal policy, performance analysis, and implications
on road traffic,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 93–107, 2018.

[76] C. Zhu, G. Pastor, Y. Xiao, Y. Li, and A. Ylae-Jaeaeski, “Fog following me: La-
tency and quality balanced task allocation in vehicular fog computing,” in IEEE
International Conference on Sensing, Communication and Networking, 2018.

[77] Y. Sun, J. Song, S. Zhou, X. Guo, and Z. Niu, “Task replication for vehicular edge
computing: A combinatorial multi-armed bandit based approach,” arXiv preprint
arXiv:1807.05718, 2018.

[78] J. Zhou, D. Tian, Y. Wang, Z. Sheng, X. Duan, and V. C. Leung, “Reliability-
optimal cooperative communication and computing in connected vehicle systems,”
IEEE Transactions on Mobile Computing, vol. 19, no. 5, pp. 1216–1232, 2019.

[79] X. Hou, Z. Ren, J. Wang, W. Cheng, Y. Ren, K.-C. Chen, and H. Zhang, “Reliable
computation offloading for edge-computing-enabled software-defined iov,” IEEE
Internet of Things Journal, vol. 7, no. 8, pp. 7097–7111, 2020.

133

[80] L. Li, X. Zhang, K. Liu, F. Jiang, and J. Peng, “An energy-aware task offloading
mechanism in multiuser mobile-edge cloud computing,” Mobile Information Sys-
tems, vol. 2018, pp. 3–15, 2018.

[81] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and computa-
tional resources for energy efficiency in latency-constrained application offload-
ing,” IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4738–4755,
2015.

[82] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and com-
putational resources for multicell mobile-edge computing,” IEEE Transactions on
Signal and Information Processing over Networks, vol. 1, no. 2, pp. 89–103, 2015.

[83] H. Trinh, D. Chemodanov, S. Yao, Q. Lei, B. Zhang, F. Gao, P. Calyam, and K.
Palaniappan, “Energy-aware mobile edge computing for low-latency visual data
processing,” in The 5th International Conference on Future Internet of Things and
Cloud, 2017.

[84] Y. Jang, J. Na, S. Jeong, and J. Kang, “Energy-efficient task offloading for vehicular
edge computing: Joint optimization of offloading and bit allocation,” in 2020 IEEE
91st Vehicular Technology Conference (VTC2020-Spring), IEEE, 2020, pp. 1–5.

[85] H. Viswanathan, E. K. Lee, I. Rodero, and D. Pompili, “Uncertainty-aware auto-
nomic resource provisioning for mobile cloud computing,” IEEE Trans. on Parallel
and Distributed Syst., vol. 26, no. 8, pp. 2363–2372, 2015.

[86] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan, and
Y. Zhang, “Energy-efficient offloading for mobile edge computing in 5g heteroge-
neous networks,” IEEE Access, vol. 4, pp. 5896–5907, 2016.

[87] X. Fan, J. Cao, and H. Mao, “A survey of mobile cloud computing,” zTE Commu-
nications, vol. 9, no. 1, pp. 4–8, 2011.

[88] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving portable com-
puter battery power through remote process execution,” ACM SIGMOBILE Mobile
Comp. and Comm. Rev., vol. 2, no. 1, pp. 19–26, 1998.

[89] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile applica-
tions,” in Proc. 17th ACM Symp. on Operating Syst. Principles, 1999, pp. 48–63.

[90] M. Patel, B Naughton, C Chan, N Sprecher, S Abeta, A Neal, et al., “Mobile-edge
computing introductory technical white paper,” White Paper, Mobile-edge Comput-
ing (MEC) industry initiative, 2014.

134

[91] Open edge computing, http://openedgecomputing.org, (accessed Octo-
ber 5, 2021).

[92] Openfog consortium, https://www.openfogconsortium.org, (accessed
October 5, 2021).

[93] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, CRAWDAD dataset
epfl/mobility (v. 2009-02-24), Downloaded from https://crawdad.org/
epfl/mobility/20090224, Feb. 2009.

[94] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc net-
work research,” Wireless Comm. & Mobile Comp., vol. 2, no. 5, pp. 483–502, 2002.

[95] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Res. Lo-
gistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[96] (2017). GPS visualizer.

[97] D. S. Johnson, “A theoretican’s guide to the experimental analysis of algorithms,”
Data structures, near neighbor searches, and methodology: fifth ann sixth DIMACS
implementation challenges, vol. 59, pp. 215–250, 2002.

[98] (2009). IBM ILOG CPLEX V12.1 user’s manual.

[99] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and
computation offloading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3,
pp. 1628–1656, 2017.

[100] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen, “Toward efficient con-
tent delivery for automated driving services: An edge computing solution,” IEEE
Network, vol. 32, no. 1, pp. 80–86, 2018.

[101] A. H. Sodhro, Z. Luo, A. K. Sangaiah, and S. W. Baik, “Mobile edge computing
based qos optimization in medical healthcare applications,” Int. J. of Inf. Manag.,
vol. 45, pp. 308–318, 2019.

[102] H. Wang, J. Gong, Y. Zhuang, H. Shen, and J. Lach, “Healthedge: Task scheduling
for edge computing with health emergency and human behavior consideration in
smart homes,” in IEEE Int. Conf. on Big Data, 2017, pp. 1213–1222.

[103] H. R. Varian, “Position auctions,” International Journal of Industrial Organization,
vol. 25, no. 6, pp. 1163 –1178, 2007.

[104] P. Cramton, Y. Shoham, and R. Steinberg, Combinatorial Auctions. MIT Press,
2006.

http://openedgecomputing.org
https://www.openfogconsortium.org
https://crawdad.org/epfl/mobility/20090224
https://crawdad.org/epfl/mobility/20090224

135

[105] T. Roughgarden, “Algorithmic game theory,” Communications of the ACM, vol. 53,
no. 7, pp. 78–86, 2010.

[106] M. R. Garey and D. S. Johnson, Computers and intractability. freeman San Fran-
cisco, 1979, vol. 174.

[107] C. Chekuri and S. Khanna, “A polynomial time approximation scheme for the mul-
tiple knapsack problem,” SIAM Journal on Computing, vol. 35, no. 3, pp. 713–728,
2005.

[108] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger, “Approximation algorithms
for knapsack problems with cardinality constraints,” European Journal of Opera-
tional Research, vol. 123, no. 2, pp. 333–345, 2000.

[109] L. Khachiyan, “A polynomial algorithm for linear programming,” Doklady Akademii
Nauk SSSR, vol. 224, no. 5, pp. 1093–1096, 1979.

[110] DSRC Technology, https://www.auto- talks.com/technology/
dsrc-technology.

[111] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars, “The
architectural implications of autonomous driving: Constraints and acceleration,” in
ACM SIGPLAN Notices, ACM, vol. 53, 2018, pp. 751–766.

[112] Tesla, Autopilot, https://www.tesla.com/autopilot, 2018.

[113] Geotab, Gridlocked Cities - U.S. traffic congestion maps, https://www.geotab.
com/gridlocked-cities/.

[114] Y. Choi, S. Park, and H. Cha, “Graphics-aware power governing for mobile de-
vices,” in Proc. 17th Annual Int. Conf. on Mobile Systems, Applications, and Ser-
vices, ser. MobiSys ’19, ACM, 2019, pp. 469–481.

[115] S. Uppoor, O. Trullols-Cruces, M. Fiore, and J. M. Barcelo-Ordinas, “Generation
and analysis of a large-scale urban vehicular mobility dataset,” IEEE Trans. Mobile
Comp., vol. 13, no. 5, pp. 1061–1075, 2013.

[116] S. Wang, Z. Qian, J. Yuan, and I. You, “A dvfs based energy-efficient tasks schedul-
ing in a data center,” IEEE Access, vol. 5, pp. 13 090–13 102, 2017.

[117] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile edge comput-
ing: Task allocation and computational frequency scaling,” IEEE Trans. on Comm.,
vol. 65, no. 8, pp. 3571–3584, 2017.

https://www.auto-talks.com/technology/dsrc-technology
https://www.auto-talks.com/technology/dsrc-technology
https://www.tesla.com/autopilot
https://www.geotab.com/gridlocked-cities/
https://www.geotab.com/gridlocked-cities/

136

[118] E. Björnson and E. G. Larsson, “How energy-efficient can a wireless communica-
tion system become?” In Asilomar Conference on Signals, Systems and Computers,
2018.

[119] Z. Xu, X. Li, X. Zhao, M. H. Zhang, and Z. Wang, “Dsrc versus 4g-lte for connected
vehicle applications: A study on field experiments of vehicular communication per-
formance,” Journal of Advanced Transportation, vol. 2017, 2017.

137

ABSTRACT

RESOURCE MANAGEMENT IN EDGE COMPUTING SYSTEMS

by

TAYEBEH BAHREINI

December 2021

Advisor: Dr. Daniel Grosu

Major: Computer Science

Degree: Doctor of Philosophy

Efficient utilization of computing resources has always been an important challenge for

service providers, leading to significant efforts on developing solutions, either in the form

of new technology or new ways to enhance the efficiency of existing technologies. Mobile

Edge Computing (MEC) is the latest technology developed to improve the high latency

in mobile cloud computing systems which stems from the long distance between cloud

servers and the end user. MEC systems are expected to improve the Quality of Service

(QoS) by bringing servers closer to the end user, but when it comes to the cost of services,

these systems face important challenges. The operating cost of MEC systems is higher than

that of the remote clouds, due to the small servers which are distributed across the network.

On the other hand, compared to the cloud data centers, edge nodes have more restricted

capacity. Another challenge in MEC systems is the mobility of users, that might make the

current allocation of resources inefficient or even infeasible in few minutes. These issues

become more challenging in the Vehicular Edge Computing (VEC) systems where each

vehicle can be considered as an edge node.

In this dissertation, we address the mentioned challenges of resource allocation in MEC

systems and VEC systems by designing efficient algorithms for resource management with

the aim of improving the performance of these systems (i.e., energy consumption, operating

cost, latency, and reliability).

138

We address the Multi-Component Application Placement Problem (MCAPP) in MEC

systems. We formulate this problem as a Mixed Integer Non-Linear Program (MINLP)

with the objective of minimizing the total cost of running the applications. In our formula-

tion, we take into account two important and challenging characteristics of MEC systems,

the mobility of users and the network capabilities. We analyze the complexity of MCAPP

and prove that it is NP -hard, that is, finding the optimal solution in reasonable amount of

time is infeasible. We design two algorithms, one based on matching and local search and

one based on a greedy approach, and evaluate their performance by conducting an exten-

sive experimental analysis driven by two types of user mobility models, real-life mobility

traces and random-walk. The results show that the proposed algorithms obtain near-optimal

solutions and require small execution times for reasonably large problem instances.

We also address the resource allocation and monetization challenges in MEC systems,

where users have heterogeneous demands and compete for high quality services. We for-

mulate the Edge Resource Allocation Problem (ERAP) as a Mixed-Integer Linear Pro-

gram (MILP) and prove that ERAP is NP-hard. To solve the problem efficiently, we pro-

pose two resource allocation mechanisms. First, we develop an auction-based mechanism

and prove that the proposed mechanism is individually-rational and produces envy-free al-

locations. We also propose an LP-based approximation mechanism that does not guarantee

envy-freeness, but it provides solutions that are guaranteed to be within a given distance

from the optimal solution. We evaluate the performance of the proposed mechanisms by

conducting an extensive experimental analysis on ERAP instances of various sizes. We

use the optimal solutions obtained by solving the MILP model using a commercial solver

as benchmarks to evaluate the quality of solutions. Our analysis shows that the proposed

mechanisms obtain near optimal solutions for fairly large size instances of the problem in

a reasonable amount of time.

Another contribution is VECMAN, a framework for energy-aware resource manage-

ment in VEC systems. The main motivation behind VECMAN is to is improve the energy

139

efficiency through sharing computing resources among connected EVs. However, the un-

certainties in the future location of vehicles make it hard to decide which vehicles partic-

ipate in resource sharing and how long they share their resources so that all participants

benefit from resource sharing. VECMAN is composed of two algorithms: (i) a resource

selector algorithm that determines the participating vehicles and the duration of resource

sharing period; and (ii) an energy manager algorithm that manages computing resources of

the participating vehicles with the aim of minimizing the computational energy consump-

tion. We evaluate the proposed algorithms and show that they considerably reduce the

vehicles’ computational energy consumption compared to the state-of-the-art baselines.

140

AUTOBIOGRAPHICAL STATEMENT

Tayebeh Bahreini is currently a Ph.D. candidate in Computer Science at Wayne State

University. She received her M.Sc. degree in Computer Engineering, from Shahed Uni-

versity, Iran in 2014, and her B.Sc. degree in Computer Science from University of Isfa-

han, Iran, in 2010. Her main research interests are edge and cloud computing, distributed

systems, parallel computing, and combinatorial optimization. She is the recipient of the

2019 National Center for Women & Information Technology (NCWIT) Collegiate National

Award. She was selected as one of the 2019 Top Ten Women in Edge and a Finalist for

the Edge Woman of the Year 2019 Award by the Edge Computing World organization for

her contribution to research in edge computing. She was selected to participate in the 8th

Heidelberg Laureate Forum and the 2020 Rising Stars in Electrical Engineering and Com-

puter Science Workshop at the University of California, Berkeley. She received, the 2020

Ralph H. Kummler Distinguished Achievement Award in Graduate Student Research from

Wayne State University College of Engineering.

	Title Page
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Introduction
	Mobile cloud computing
	Cloudlet
	Fog computing
	Mobile edge computing
	Vehicular edge computing
	Contributions of this research
	Organization

	Related work
	Application placement
	Resource allocation and pricing
	Resource management in VEC systems

	Efficient Algorithms for Multi-Component Application Placement in Mobile Edge Computing
	Introduction
	Our contributions
	Organization

	Multi-component application placement problem
	Complexity of MCAPP

	Algorithms for MCAPP
	MATCH-MCAPP algorithm
	G-MCAPP algorithm

	An illustrative example
	 MATCH-MCAPP
	G-MCAPP

	Experimental results
	Experimental setup
	Analysis of results

	Conclusion

	Mechanisms for Resource Allocation and Pricing in Mobile Edge Computing Systems
	Introduction
	Our contributions
	Organization

	Edge resource allocation and pricing problem
	Complexity of ERAP

	Envy-free resource allocation and pricing mechanism
	Properties of G-ERAP

	LP-based approximation mechanism for resource allocation and pricing
	Properties of APX-ERAP

	Experimental Analysis
	Experimental setup
	Analysis of results

	Conclusion

	VECMAN: A Framework for Energy-Aware Resource Management in Vehicular Edge Computing Systems
	Introduction
	Our contributions
	Organization

	VECMAN problem formulation
	Illustrative example
	RSP formulation
	ERMP formulation

	VECMAN algorithms
	 I-Selector algorithm
	 G-ERMP algorithm
	G-ERMP execution: example

	Experimental analysis
	Experimental setup
	Experimental results

	Conclusion

	Conclusion and Future Research
	Our contributions
	Future research

	References
	Abstract
	Autobiographical Statement

