
Energy-Aware Resource Management in Vehicular Edge Computing Systems

Tayebeh Bahreini
Dept. of Computer Science
Wayne State University, USA

Email: tayebeh.bahreini@wayne.edu

Marco Brocanelli
Dept. of Computer Science
Wayne State University, USA

Email: brok@wayne.edu

Daniel Grosu
Dept. of Computer Science
Wayne State University, USA
Email: dgrosu@wayne.edu

Abstract—The low-latency requirements of connected elec-
tric vehicles and their increasing computing needs have led to
the necessity to move computational nodes from the cloud data
centers to edge nodes such as road-side units (RSU). However,
offloading the workload of all the vehicles to RSUs may not
scale well to an increasing number of vehicles and workloads.
To solve this problem, computing nodes can be installed directly
on the smart vehicles, so that each vehicle can execute the heavy
workload locally, thus forming a vehicular edge computing
system. On the other hand, these computational nodes may
drain a considerable amount of energy in electric vehicles. It
is therefore important to manage the resources of connected
electric vehicles to minimize their energy consumption.

In this paper, we propose an algorithm that manages the
computing nodes of connected electric vehicles for minimized
energy consumption. The algorithm achieves energy savings for
connected electric vehicles by exploiting the discrete settings
of computational power for various performance levels. We
evaluate the proposed algorithm and show that it considerably
reduces the vehicles’ computational energy consumption com-
pared to state-of-the-art baselines. Specifically, our algorithm
achieves 15-85% energy savings compared to a baseline that
executes workload locally and an average of 51% energy sav-
ings compared to a baseline that offloads vehicles’ workloads
only to RSUs.

Keywords-Resource Management, Vehicular Edge Comput-
ing, Energy Management.

I. INTRODUCTION

The future increase in the amount of data and workloads
(e.g., image recognition, infotainment) generated on con-
nected electric vehicles leads to the necessity to move the
computational nodes from the cloud data center closer to
the vehicles [13]. In such edge environment, computational
nodes can be deployed in edge nodes such as Road-Side
Units (RSUs) so that heavy workloads of nearby vehicles
can be processed with a much lower latency compared
to using the cloud nodes. However, this system may have
issues of scalability to an increasing number of vehicles and
workloads. Due to the limited resource availability in RSUs,
some vehicles may experience poor performance or even
failure. To solve this problem, powerful computing nodes
such as the Nvidia Drive Px 2 can be installed on each
vehicle to execute most of the workload locally. In addition,
vehicles can communicate with each other and with RSUs
using the Dedicated Short Range Communication (DSRC)

technology [1]. A system that connects the computing re-
sources of vehicles, RSUs, and cloud is called a Vehicular
Edge Computing (VEC) system. On the other hand, the com-
putational energy consumption can affect the driving range
of vehicles. For example, a computing node consisting of
one CPU of type Intel Xeon E5-2630 and three GPUs of type
NVIDIA TitanX can reduce the driving range of a Chevy
Bolt by 6% [7]. However, by considering the whole system
and including storage and cooling overhead, the reduction
is about 11.5% [7]. Given the above challenges in VEC
systems, it is desired to coordinate the available computing
nodes to minimize the vehicles’ energy consumption.

Previous studies have proposed various solutions for
VEC systems. Unfortunately, they have at least one of two
problems. First, they are unaware of the limited energy
availability. Many previous studies on VEC systems fo-
cused on ensuring high Quality of Service (QoS) without
considering the limited energy availability of electric vehi-
cles [14], [16]. In addition, in order to minimize the risk
of failure, some studies [5], [10], [17] used task replication.
However, they do not balance the number of replicas with
the energy consumption: having a high number of replicas
may lead to a small improvement in robustness to failure
while causing energy waste on vehicles. Second, they are
unaware of moving service providers. Several solutions have
been proposed to trade off between latency and energy
consumption in mobile edge computing systems [6], [8],
[9], [11], [12], [15]. However, most of them do not consider
the case of VEC systems where the service providers, i.e.,
the vehicles, can quickly change their location. Without a
proper consideration of the vehicles’ moving pattern, the
offloading mechanism may lead to a poor QoS and a higher
risk of failure. In addition, as also experimented in some of
the above related work (e.g., [14]), the limited computing
resources at RSU level leads to blocked or dropped vehicular
workloads, which inevitably leads to poor QoS or higher
energy consumption for some vehicles. To the best of our
knowledge, none of the above solutions consider at the
same time the problems of (a) coordinating the computing
resources of moving vehicles, and (b) deciding the number
of replicas for vehicular workloads to minimize the vehi-
cles’ energy consumption without violating the desired QoS
levels.

In this paper, we propose an energy-aware resource man-
agement algorithm for VEC systems. Rather than relying on
the limited capacity of RSU nodes, the algorithm coordinates
the computing resources of the vehicles to achieve energy
savings. The key-intuition for achieving energy savings
is to exploit the discrete power/performance settings of
computing resources such as CPUs and GPUs. For exam-
ple, CPUs commonly have a fixed number of selectable
configurations for voltage-frequency levels and number of
cores to trade off power consumption and performance. Each
configuration leads to a maximum number of instructions
that can be executed within a certain time period. If the
local workload exceeds that maximum, then the system must
select a new configuration that increases the performance at
the cost of a higher power consumption, e.g., activate more
cores or increase the voltage-frequency level. However, this
selected default configuration may not be fully utilized by
the local workload, i.e., the number of instructions executed
with the local workload is lower than the maximum achiev-
able by the default configuration. Thus, requester vehicles
can achieve energy savings by offloading workloads on
the providers’ nodes and by using the providers’ leftover
capacity without changing their default configuration, i.e.,
without affecting the provider’s power consumption. Then, at
a later time, the providers can become requesters to achieve
energy savings.

Based on the above intuition, an energy manager runs
periodically on the local RSU to decide (a) the state of each
nearby vehicle, i.e., requester or provider, and (b) the number
of replicas for the requesters’ workloads that minimizes
the energy consumption of all the vehicles. We formulate
this Energy-aware Resource Management Problem as a
Mixed Integer Non-Linear Program (i.e., ERMP-MINLP).
ERMP-MINLP is robust to uncertainties of vehicles’ loca-
tions. However, it is also a chance-constrained optimization
problem, which is not solvable in polynomial time. Thus,
we propose a greedy algorithm called G-ERMP to find a
solution in polynomial time. G-ERMP considers a set of
probable future locations for each vehicle to minimize their
energy consumption while ensuring a low risk of failure and
good QoS.

In summary, this paper makes the following contributions:

• Formulate the energy-aware resource management
problem (ERMP) as an MINLP.

• Design an efficient greedy algorithm (G-ERMP) to
solve the ERMP problem in polynomial time.

• G-ERMP achieves 15-85% energy savings compared
to a baseline that executes workload locally and an
average of 51% energy savings compared to a baseline
that offloads workloads only to RSUs.

The rest of the paper is organized as follows. Section II
formulates the ERMP problem. Section III provides the
details of our proposed G-ERMP algorithm. Section IV de-

Cell Partitioner
Energy Manager

1

2

3
4

5

Cellular Tower
Road-Side Unit

(a)

Pr
ov

id
er

Requester

Workload
Result

Provider

A

C

B

W
or

klo
ad

Cancel

1

Energy Manager Road-Side Unit

4
1

1

2

3

2

(b)

Figure 1: Overview of a VEC system: (a) the cell partitioner
creates 5 edge-cells. (b) each edge-cell runs the energy
manager.

scribes the experimental setup and results. Finally, Section V
concludes the paper and discusses our future work.

II. ENERGY-AWARE RESOURCE MANAGEMENT IN VEC

In this section, we formulate the Energy-aware Resource
Management Problem (ERMP) in VEC systems. We assume
that cell towers run a cell partitioner, which takes the vehi-
cles’ speed and direction into consideration to periodically
(at a coarse time scale) assign vehicles within its cell to edge-
cells managed by RSUs, so that each vehicle remains in
the assigned edge-cell for most of the cell partitioner time
period. We also consider that, within each edge-cell, the
local RSU periodically runs, at a finer time scale than the cell
partitioner, the energy manager, which decides the vehicles’
state (i.e., requester or provider), the number of replicas
for each requester’s workload, and the replicas’ allocation
on provider vehicles. Cell partitioner and energy manager
run at different time scales and can be treated as separate
problems. Figure 1(a) shows a hierarchical architecture of a
VEC system. In the example of the figure, there are several
vehicles and RSUs that are co-located within the cellular
area of a cellular tower. Based on the information of the
vehicles (i.e., speed and direction), the cell partitioner creates
five edge-cells of cars. Each edge-cell is managed by a local
RSU that runs the energy manager periodically. Figure 1(b)
shows a single edge-cell with three vehicles and a local
RSU. In this example, the energy manager (1) selects vehicle
A as a service requester and vehicles B and C as service
providers. It also determines two replicas for the request of
vehicle A to be assigned on vehicles B and C. (2) The energy
manager coordinates the replicas deployment. (3) When one
of the providers returns the computation result to A (e.g.,
vehicle C), (4) the other providers stop the computation and
wait for other workloads.

In this paper, we focus on the design of the energy
manager and leave as future work the design of the cell
partitioner. Note that the energy manager is distributed
across RSUs and thus the above described structure can

2

handle vehicles moving across edge-cells after each cell-
partitioner period.
Energy-Manager Problem Statement. Given the above
described architecture, within each cell-partitioner period,
the inputs of the energy manager are a fixed set of V
vehicles, the historic location of vehicles until the current
time, and the workload characteristics. We assume that the
RSU runs the energy manager for Fe periods within each
cell partitioner period. The length of each period is fixed and
is denoted by Tem, which can be set to a value that satisfies
the Quality of Service (QoS) for the workloads execution,
i.e., every workload should execute within Tem units of time.
Thus, the energy manager, at each one of the Fe invocations,
decides the vehicle’s state and the number of replicas for
each selected requester so that, after Fe periods, the ve-
hicles’ energy consumption is minimized without violating
the QoS requirements. In other words, we want to ensure
that each vehicle, by participating in sharing computational
resources, can save some energy before changing the edge-
cell assignment at the next cell partitioner invocation. Next,
we identify two important constraints for ERMP, define the
energy model of vehicles, and formulate the optimization
problem.
Capacity Constraint. We characterize the workload of
vehicle j by Rj = {r1j , . . . , rQj}, where Q is the number
of resource types and rij is the amount of resource of
type i needed to complete the execution of the workload.
We consider three resource types (i.e., Q = 3) indexed
by h: CPU (h = 1), memory (h = 2), and storage
(h = 3). Thus, r1j is the number of CPU instructions
(in millions), r2j is the amount of memory, and r3j is
the amount of storage needed by workload of vehicle j.
Each vehicle j selected as a provider has a limited capacity
Chj for each resource h, thus the total amount of resources
requested cannot exceed the available capacity:

V∑
i=1

xij · rhi ≤ xjj · Chj ∀j,∀h (1)

where V is the total number of vehicles in the edge-cell
and xij is a binary variable that is 1, if a replica of
vehicle i is assigned to vehicle j, and 0, otherwise. The state
of vehicle j is associated with the value of variable xjj .
Vehicle j is a requester if it does not run its workload
locally, i.e., xjj = 0, otherwise it is a provider. Thus,
the above constraint also guarantees that no replica will
be assigned to requester vehicles. As we describe later, we
use xij to decide the number of providers and the number
of requesters’ workload replicas during each one of the Fe
periods. However, the optimized variable xij also gives an
initial placement of replicas to providers, which can be either
enforced or optimized at a finer time grain for a higher QoS.

A challenge to overcome is how to calculate the CPU
capacity C1j in Constraint (1). We define the CPU capacity

based on the Millions of Instructions per Second (MIPS) that
can be executed for a certain CPU frequency and number of
cores. This relation can be approximated as follows:

MIPSj = (ϑj · fj + θj) · nj (2)

where ϑj and θj are estimated parameters, nj is the number
of cores, and fj is the CPU frequency of each core (assum-
ing the same frequency for all the cores for simplicity). In
order to ensure a good QoS, the required time to run the
local workload r1j must be shorter than the energy manager
period duration Tem, which can be set as desired. Thus,
vehicle j can satisfy this QoS requirement at the minimum
energy consumption for its own computation by selecting
as default the minimum frequency level that satisfies the
following inequality:

fj ≥
r1j

ϑj · nj · Tem
− θj
ϑj

(3)

As a result, the total CPU capacity C1,j of Equation (1) can
be calculated as follows:

C1j = (ϑj · fj + θj) · nj · Tem (4)

For each vehicle j, the leftover capacity that can be used for
requester workloads can be calculated as MIPSj ·Tem−r1j ,
where MIPSj is calculated using the default frequency fj
described above. This capacity constraint enables the en-
ergy manager to place extra workload on provider vehicles
without affecting their default CPU power consumption.
Thus, the energy manager can achieve energy savings for all
the V vehicles in the edge-cell over multiple energy manager
periods.
Risk Factor Constraint. Despite the cell partitioner efforts
to provide a static vehicle set within each partitioner period,
it may happen that some vehicles may change location in
any of the Fe energy manager periods. Thus, because the
future vehicle locations can only be predicted, we need to
ensure that, with some level of confidence defined by a risk
factor, each requester has a good connection with at least one
provider during each period. To formulate this constraint,
we first need to find the minimum distance between each
requester and providers. In particular, for every selected
requester, we want to have at least one provider within a
reliable distance δ > 0. On the other hand, the location of
vehicles is non-deterministic and thus it may be affected
by estimation errors. As a result, we must make sure that
the probability of having at least one provider in a reliable
distance is greater than a satisfaction factor (1 − α). This
constrain can be expressed as follows:

p

{
min

j∈{1,...,V }
{lij · xij +M · (1− xij)} ≤ δ

}
≥ 1− α ∀i

(5)

where lij is the average distance between vehicle i and
vehicle j in the current period and M is a sufficiently large

3

number. The second term M · (1− xij) is needed to handle
the cases in which the first term is 0 either because i = j
and i is a requester (i.e., lij · xij = 0 where lij = 0 and
xij = 0), or because i 6= j where j is a provider not serving
requests of i (i.e., lij · xij = 0 where lij > 0 and xij = 0).
Energy Consumption. The computing system energy con-
sumption for vehicle j is mainly characterized by two
components, i.e., the computational and the transmission en-
ergy consumption. The computational energy consumption
Ecompj can be estimated with a linear model of the CPU
clock frequency fj and the number of cores nj :

Ecompj = Tem ·
[
P idlej + nj · (λj · fj + γj) · xjj

]
(6)

where P idlej is the idle power consumption, λj and γj
are estimated parameters. Note that when the CPU is idle
because vehicle j is a requester, i.e., xjj = 0, the compu-
tational energy consumption of the vehicles is equivalent to
Tem ·P idlej . Therefore, the energy savings of vehicle j, if it
is selected as a requester, are calculated as follows:

Esavej = Tem · (1− xjj) · (λj · fj + γj) · nj (7)

Note that, if vehicle j is a provider, i.e., xjj = 1, Esavej = 0.
The transmission energy consumption of vehicle j to

receive a request from vehicle i is calculated as the ratio
of the request size di and the average bandwidth bij , i.e.,
ωj · dibij . The parameter ωj is the energy consumption of
vehicle j to receive one unit of data. Also, the average
bandwidth bij between vehicle i and vehicle j is proportional
to their average distance lij , i.e., bij = µ

lij
, where µ is a

constant estimated parameter. Therefore, the total energy
consumption of vehicle j to receive requests from other
vehicles, i.e., Erecj , is:

Erecj = Tem ·

[
V∑
i=1

xij · ωj ·
di
bij

]
(8)

Similarly, the energy consumption of vehicle j to send its
request to other vehicles is:

Esendj = Tem ·

[
V∑
i=1

xji · ψj ·
dj
bji

]
(9)

where ψj is the energy consumption of vehicle j to send
one unit of data to the network. Note, Equations (8) and (9)
guarantee that Erecj = 0 and Esendj = 0 if vehicle j is
selected as a requester and a provider, respectively.

In order to keep track of the total energy saved and extra
energy spent by each vehicle when selected as requesters
or providers, respectively, we define the energy balance. In
each energy manager period, the energy balance of vehicle j,
Eblncj , is calculated based on the energy balance Eblnc

′

j

obtained from the previous periods, the transmission energy,
and the energy savings in the current period. In practice, a
negative energy balance means energy savings compared

Table I: Notation

Notation Description
V Total number of vehicles in the edge-cell
α Risk factor
xij Binary decision variable for replica assignments
rhj Amount of type h resource requested by vehicle j
lij Average distance between vehicle i and j
Chj Available capacity of resource of type h h
Eblnc

′
j Energy balance of vehicle j from previous period

P idlej Idle power consumption of vehicle j
fj Default CPU frequency of vehicle j
dj Size of the request of vehicle j
bij Average bandwidth between vehicle i and vehicle j
ψj Transmission Energy to send one unit of data
ωj Transmission Energy to receive one unit of data
λj , θj , γj , ϑj Estimated parameters

to always executing the workload locally. Given the above
models, the energy balance is calculated as follows:

Eblncj = Eblnc
′

j + Tem · (xjj − 1) · (λj · fj + γj) · nj+
V∑
i=1

xji · ψj ·
dj
bji

+

V∑
i=1

xij · ωj ·
di
bij

(10)

Problem Formulation. The main objective of the energy
manager is to minimize the vehicles’ energy balance. In
fact, it would be desired to have a negative energy balance
for all the vehicles before the end of the current cell
partitioner period. Table I summarizes the notation used in
the formulation. The Mixed Integer Non-Linear Program
(MINLP) for ERMP denoted by ERMP-MINLP is defined
as follows:

Min z (11)
s.t.:

V∑
i=1

xij · rhi ≤ xjj · Chj ∀j, ∀h (12)

p

{
min

j∈{1,...,V }
{lij · xij +M · (1− xij)} ≤ δ

}
≥ 1− α ∀i

(13)

Eblnc
′

j + Tem · (xjj − 1) · (λj · fj + γj)+
V∑
i=1

xji · ψj ·
dj
bji

+

V∑
i=1

xij · ωj ·
di
bij
≤ z ∀j (14)

xij ∈ {0, 1} ∀i,∀j (15)

The objective function of ERMP-MINLP is to minimize the
maximum energy balance of each vehicle. This is equivalent
to minimizing an auxiliary variable z that is an upper bound
for the energy balance of each vehicle (Constraint (14)).
Constraint (15) guarantees the integrality of the decision
variables. Finally, Constraints (12) and (13), as described
in the previous paragraphs, enforce the available resource
capacity and the desired risk factor, respectively.

4

III. A GREEDY ALGORITHM FOR ERMP
Due to Constraint (13), ERMP-MINLP can be classified

as a chance-constrained optimization problem. As a result, it
is robust to location uncertainties of the vehicles. However,
solving chance-constrained optimization problems optimally
usually requires computationally expensive algorithms (e.g.,
CPLEX [2]) that are not suitable for our setting. Therefore,
we develop an efficient greedy algorithm called G-ERMP
that finds a feasible solution to ERMP-MINLP in polyno-
mial time.

G-ERMP operates in two phases using various scenarios
to handle the chance constraint. Each scenario assumes a
deterministic (i.e., known) location for vehicles. In the first
phase, the algorithm picks a random sample of scenarios
generated based on a set of probable locations for the
vehicles. Therefore, the algorithm solves the deterministic
version of ERMP-MINLP to obtain a solution for each
scenario. Because the location within a scenario is known,
this solution provides a single replica for each requester
vehicle. Then, in the second phase, based on the assignments
obtained for each scenario, the algorithm determines the
number of replicas for each vehicle as well as their replica
assignment so that Constraint (13) is satisfied with a proba-
bility higher than (1− α). However, the problem solved in
the first phase of G-ERMP belongs to the class of packing
problems, which are known to be NP-hard. Therefore, it
is not solvable in polynomial time, unless P=NP. For this
purpose, we first develop a greedy algorithm called GD-
ERMP, that solves the problem associated with the first
phase of G-ERMP in polynomial time for a selected sce-
nario. Then, we describe the complete G-ERMP algorithm,
which examines the solutions provided by GD-ERMP to
finalize the selection of the providers and the number of
replicas.

A. The GD-ERMP Algorithm

In order to minimize the maximum energy balance of
vehicles, GD-ERMP analyzes the energy balance of each
vehicle at the beginning of each period: vehicles with a low
energy balance are more likely to be selected as the providers
for the current period. However, making this decision based
only on energy balance may lead to an unnecessarily high
number of irregularly distributed providers. To solve this
problem, our algorithm needs to consider both the location
of the vehicles and their energy balance.

Algorithm 1 shows the pseudo-code of GD-ERMP. It
considers both the energy balance and the location of
vehicles to decide the set of providers S and the number
of replicas for requesters. The input is the vector of vehicles
with their request type Rj , capacity Cj , their current energy
balance Eblnc

′

j , and their location (in a given scenario) Aj .
The output is the allocation matrix X = {xij}. In order
to determine the providers, GD-ERMP first picks a vehicle
with the minimum energy balance, and puts it in the set of

Algorithm 1 GD-ERMP
Input: Set of vehicles : V

1: j ← argmini∈V E
blnc′
i

2: S ← {j}
3: stop← false
4: while not stop do
5: stop← true
6: for i ∈ V − S do
7: j ← nearest-provider(i, S,X)
8: if lij ≤ δ then
9: yi ← j

10: else
11: j ← argmaxi∈V−S(l(i,S)

L̄
− Eblnc′

i
Ē

)
12: S ← S ∪ {j}
13: stop← false
14: break
15: for i ∈ S do
16: xii ← 1
17: for i ∈ V − S do
18: xiyi ← 1

Output: X

providers S (Lines 1-2). Then, in an iterative manner, other
providers are added to S. For each vehicle i that is not
selected as a provider, the algorithm calls nearest-provider
to find the nearest provider that has enough capacity to serve
the vehicle (Line 7). If that provider is within a reliable
distance, i.e., lij ≤ δ, the requester is assigned to that
provider and the allocation vector y is updated (Lines 8-9).
If the algorithm cannot allocate a request within a reliable
distance, the current set of providers is not enough to satisfy
all the requests. Hence, the algorithm needs to add another
vehicle to the set of providers. As discussed in the examples
above, the next provider is chosen so that it has a relatively
low energy balance and it is far away from the already
selected providers, which helps covering more requesters
with a minimum number of providers. This strategy is
implemented in Lines 11-14, where the algorithm picks a

vehicle that has the maximum value of
(
l(i,S)
L̄
− Eblnc′

i

Ē

)
,

where l(i, S) is the distance of vehicle i from the selected
providers, i.e., l(i, S) = minj∈S lij . L̄ and Ē are the average
distance over vehicles and the average energy balance over
vehicles, respectively.

The above procedure is repeated until all requests are
allocated to providers that are within a reliable distance.
Then, the algorithm updates the allocation matrix X based
on the allocation obtained for vector y in the last iteration
of the algorithm (Lines 15-18).

Complexity Analysis. The time complexity of GD-ERMP
is O(V 3). The main part of GD-ERMP consists of the loop
in Lines 4-14, which executes |S| times. In each iteration,
for each non-provider vehicle, finding the nearest provider
among j providers will take O(j) time. Therefore, the total
time complexity of GD-ERMP is

∑|S|
j=1(V −j)·j = O(V 3)

5

Algorithm 2 G-ERMP
Input: Set of vehicles : V

Set of scenarios :ξ
1: S ← ∅
2: for each j ∈ V do
3: σj ← 0

4: Γ← ∅
5: for each ε ∈ ξ do
6: Zε ←GD-ERMP(V ,ε)
7: for each j ∈ V do
8: for each i ∈ V do
9: wij ←

∑
ε∈ξ z

ε
ij

10: Indegj ←
∑
i∈V wij

11: while |Γ| < V do
12: j ← argmaxi∈V−Γ Indegi
13: S ← S ∪ {j}
14: xjj ← 1
15: Γ← Γ ∪ {j}
16: for each i ∈ S do
17: if xji = 1 then
18: xji ← 0
19: for each k ∈ V − Γ do
20: if wki > 0 and available(k,i,X) then
21: xki ← 1
22: σk ← σk + wki
23: if σk > (1− α) · |ξ| then
24: Γ← Γ ∪ {k}
25: for each g ∈ V − Γ do
26: if wgj > 0 and available(g,j,X) then
27: xgj ← 1
28: σg ← σg + wgj
29: if σg > (1− α) · |ξ| then
30: Γ← Γ ∪ {g}
Output: X

B. The G-ERMP Algorithm

Algorithm 2 shows the pseudo-code of G-ERMP. The
algorithm has as input the set of scenarios, ξ, the vector of
vehicles with their request size, Rj , and their capacity, Cj .
The output is the allocation matrix X = {xij}. The main
idea of G-ERMP is to create a graph based on the allocation
matrices Zε = {zεij}, where zεij is 1 if vehicle i is assigned
to vehicle j in scenario ε, and 0, otherwise. Each vertex
of this graph represents a vehicle; each edge of the graph
indicates a requester i to provider j assignment, weighted
by the number of scenarios in which a request of i has
been allocated to j by the GD-ERMP algorithm. Then, the
algorithm partitions this graph into the set of providers and
the set of requesters, and determines the number of replicas
for each requester. This partitioning is done so that, for each
vehicle, Constraint (13) is satisfied for more than (1−α)·|ξ|
scenarios.

G-ERMP starts with an empty set of providers S
(Line 1). In each iteration of the algorithm, this set will
be updated. Also, we define vector σ = {σj} to store the
number of scenarios in which Constraint (13) is satisfied

for each vehicle j (Lines 2-3). We define Γ as a set of
vehicles for which Constraint (13) is satisfied. G-ERMP
initializes Γ with the empty set (Line 4). Matrix Z is used
to save the allocation obtained for each scenario (Lines 5-
6). Based on the allocation matrix Z, the algorithm creates
a graph with V vertices. Each vertex represents a vehicle
and each edge indicates a request-provider assignment. The
weight of an edge from vertex i to vertex j is denoted by wij
and is defined as the number of scenarios in which vehicle
i is assigned to vehicle j. The indegree of vertex j, i.e., the
total weight of edges adjacent to vertex j, is stored in vector
Indeg = {Indegj} (Lines 7-10).

In order to find the minimum number of providers, in
each iteration, G-ERMP selects the vehicle as the provider
that has received the maximum number of requests from the
various scenarios. Therefore, it choses the vertex with the
maximum indegree as a provider (Line 12). Then, it updates
the set of providers, and the allocation matrix (Line 13-14).
When a vehicle is selected as a provider, it runs its requests
locally, which means that, for this vehicle, Constraint (13) is
automatically satisfied. Thus, it adds the current provider to
the set Γ (Line 15). The algorithm then updates the replica
assignment of vehicles in two steps. In the first step, since
vehicle j is selected as a provider, the algorithm removes all
the previous assignments from vehicle j on any provider. In
fact, the algorithm checks if a request from vehicle j has
been assigned to a provider i, it removes that assignment
and resets the corresponding allocation variable (Lines 16-
18). Furthermore, since the remaining capacity of vehicle i
is increased, it might be able to serve more requests. Thus,
for each vehicle k ∈ V − Γ willing to be assigned to
vehicle i, the algorithm updates the assignment if vehicle i
has enough capacity. It also updates σ for vehicle k. If σk
is greater than (1 − α) · |ξ|, the algorithm adds vehicle k
to Γ. Therefore, the algorithm will not generate any further
replica for that vehicle (Lines 19-24). In the second step, the
algorithm assigns requests from each vehicle g willing to be
assigned to vehicle j. It updates the assignment if vehicle i
has enough capacity. It also updates σ for vehicle g. If σg is
greater than (1− α) · |ξ|, the algorithm adds vehicle g to Γ
(Lines 25-30). The algorithm continues this procedure until
all the vehicles are added to set Γ. Due to space limitations,
we refer to Sections 4 and 5 of our technical report [3] for
illustrative examples to show how the proposed algorithm
works.

Complexity Analysis. To investigate the time complexity
of G-ERMP, we analyze the time complexity of the two
main parts of the algorithm. In the first part, G-ERMP calls
GD-ERMP for each scenario. Therefore, as analyzed in the
previous section, the time complexity of the first part is
O(|ξ| · V 3). In the second part, G-ERMP builds a graph
based on the solution obtained in the first part. The time
complexity of the second part mainly depends on the loop in

6

Lines 11-29, which executes O(V) times. The main part of
the loop consists of the loop in Lines 16-24 which executes
O(|S| · (|V − |Γ|)) times. Therefore, the time complexity
of the second part is O(V 3). As a result, the total time
complexity of G-ERMP is O(|ξ| · V 3 + V 3) = O(|ξ| · V 3)

IV. EXPERIMENTAL ANALYSIS

A. Experimental setup

Edge-Cell Setup. We consider a time slotted system in
which the location of vehicles may change from one time
slot to another. Vehicles are located within a 4-way road.
An RSU is located at the intersection. We assume that the
coverage range of the RSU is 1 km, which is similar to the
radius of DSRC technologies used on connected vehicles [1].
The RSU runs the energy manager for 10 periods. The
duration of each period is 10 time slots, i.e., Tem = 10.
Based on the traffic and the average speed of vehicles on
each road, we initialize the location of vehicles so that they
do not leave the coverage area of the RSU during the 10
energy manager periods. In our setup, we assume that the
traffic on North-South road is two times heavier than the
traffic on East-West road. The direction of each vehicle can
be toward the intersection or away from the intersection.
We also assume that the speed of vehicles on the East-West
road is 20 meters per second while that of the vehicles on
the North-South road is 10 meters per second. We consider
that vehicles moving towards the intersection may turn to
the other road with a probability calculated based on the
traffic statistics. Therefore, the location of vehicles during
the current energy manager period, depends on the initial
location, the direction, and the speed of the vehicles on the
road. Given this setup, we estimate that there could be up
to 400 vehicles on the road within the considered edge-cell.

Computing Setup. Table II shows the parameters that we
use to generate instances in our analysis. In this table,
U [x, y] indicates the uniform distribution within the interval
[x, y], and N(x, y) indicates the normal distribution with
mean x and variance y. We assume that for each type of
resources, the capacity of vehicles is in the same range
and does not vary significantly. Therefore, we use normal
distribution for the memory and storage capacity of vehicles.
The capacity of CPU depends on the default frequency of
vehicles (See Equation (4)). We use as an example CPU the
ARM Cortex A57. The CPU has 13 frequency levels from
700 MHz to 1,900 MHz and the difference of frequency
between two consequent levels is about 100 MHz. We profile
the Cortex A57 in terms of MIPS and power consumption
for each frequency level to get the model parameters in
Equations (4) and (6). Specifically, the maximum leftover
capacity of a provider over Tem time slots does not exceed
30,732 million instructions. Therefore, to have a reasonable
problem settings, we vary the workload of vehicles between
500 million instructions and 20,000 million instructions.

Table II: Distribution of parameters
Parameter Distribution/Value Parameter Value

rh1

low: U [100, 5000] P idlej 0.1

medium: U [5000, 10000] ϑj 7.683
heavy: U [10000, 20000] µ 10

rh2 U [100, 1000] θj −4558.52
rh3 U [100, 1000] Fe 10
C2j N [5000, 1000] Tem 10
C3j N [5000, 1000] γj −0.741625
α 0.1 λj 0.00125
ωj 0.2 φj 0.2

According to Equation (3), the default frequency of vehi-
cles varies between 700 MHz and 900 MHz, which gives
an estimated capacity between 8,198 and 94,259 million
instructions to execute within a Tem period. We estimate
the transmission energy parameters ωj and φj based on the
analysis provided in [4].
Performance Metrics. The performance of the proposed
algorithm is evaluated by computing the percentage of
total energy saving, which is defined as the ratio between
the total energy saving of vehicles and the total baseline
energy consumption (when all the vehicles run their requests
locally).

ES(%) = 100 ·
∑V
i=1(ai · fi + bi) · ni · (1− xjj)∑V

i=1(ai · fi + bi) · ni
(16)

To evaluate the fairness of the algorithms, we determine
the Coefficient of Variation (CV) over energy balance of the
vehicles. A lower value of CV means a more fair distribution
of requests. CV is defined as the ratio of the standard
deviation of Eblncj over the average energy balance across
vehicles Ē,

CV =

√
1
V

∑V
j=1(Eblncj − Ē)2

Ē
(17)

G-ERMP is implemented in C++ and the experiments are
conducted on an Intel 1.6GHz Core i5 with 8 GB RAM.

B. Experimental results

In this section, we first investigate the performance of
G-ERMP compared to the baseline that executes workload
of each vehicle locally for the low, medium, and high
workload instances and a fixed number of vehicles. Then,
we investigate the scalability of G-ERMP compared to a
baseline that only offloads vehicles’ workload to the local
RSU while changing the number of vehicles and using
random workload instances.
Fixed Number of Vehicles. Here we analyze the per-
formance of G-ERMP by considering a fixed number of
vehicles, i.e., V = 100, and run the algorithm in 10
energy-manager periods. We consider three sets of workload
instances: low, medium, and high. In these instances, the
size of transmission data of vehicles is low and is randomly
chosen from [200, 500] KB (see our Tech Report [3] for
the tests on the effect of data transmission). The average

7

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Ve
hi

cl
es

 w
ith

 n
eg

at
iv

e
ba

la
nc

e
(%

)

Period

High workload Medium workload Low workload

(a)

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9 10

Pr
ov

id
er

s (
%

)

Period

High workload Medium workload Low workload

(b)

Figure 2: G-ERMP performance with low, medium, and high workloads: (a) Percentage of vehicles with negative balance,
(b) Percentage of vehicles selected as provider.

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10

C
V

Period

High workload Medium workload Low workload

(a)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

E
ne

rg
y

sa
vi

ng
 (%

)

Period

High workload Medium workload Low workload

(b)

Figure 3: G-ERMP performance with low, medium, and high workloads: (a) Coefficient of Variance (CV) of energy balance,
and (b) Percentage of energy saving.

execution time of G-ERMP for each problem instance is
about 0.06s, which is negligible compared to the execution
period of the requests (Tem = 10s).

As Figure 2(a) shows, the percentage of vehicles with
a negative balance increases over the periods. For problem
instances with low and medium workload, after two periods,
all vehicles obtain energy savings. However, for the heavy
workload instances, only 97% of the vehicles are able to
obtain energy savings because heavy workloads are more
difficult to place on providers without changing their default
frequency. High workloads have two consequences. First,
as Figure 2(b) shows, the percentage of providers increases
compared to the low workloads, and second, as Figure 3(a)
shows, the CV value of high workloads is generally higher
than that of the low workloads because more vehicles have
to process their requests locally. This leads to having fewer
vehicles achieving energy savings. On the other hand, as Fig-
ure 3(b) shows, even for the high-workload case the vehicles
can achieve about 15% more energy savings compared to the
baseline while the medium and low workloads achieve 50%
and 85% energy savings, respectively.

These experiments show that the G-ERMP allows vehi-
cles to achieve energy savings for their computational nodes.

Scalability. Here, we investigate the scalability of G-ERMP

to the number of vehicles and compare it to a baseline called
RSU-Base, which uses the local RSU to run the request
of the vehicles. RSU-Base orders the vehicle requests in
descending order based on the vehicles’ energy balance and
then, starting from the one with highest balance, it allocates
as many requests as possible on the RSU’s resources.

As discussed in Section IV-A, the estimated number of
vehicles that can be hosted in the edge-cell is 400. Thus,
here we vary the number of vehicles from 100 to 550 so
that we account also for estimation error on speed and
vehicle sizes. The vehicles’ workload is randomly chosen
from the low, medium, and high workload. As Figure 4(a)
shows, by increasing the number of vehicles, the execution
time of G-ERMP increases polynomially (see analysis in
Section III). However, on average, its execution time is less
than 10% of the energy-manager period duration and thus
is acceptable. On the other hand, as Figure 4(b) shows,
G-ERMP allows all the vehicles to obtain energy savings
after 10 periods while RSU-Base, because of its limited
resources, cannot achieve energy savings for all the vehicles
when there are more than 300 vehicles in the edge-cell. As a
result, as Figure 5(a) shows, G-ERMP has a fair distribution
of the energy savings (decreasing CV value) while RSU-
Base has an unbalanced savings distribution (increasing
CV value) due to the limited number of vehicles that can

8

1

501

1001

1501

2001

2501

3001

100 150 200 250 300 350 400 450 500 550

E
xe

cu
tio

n
tim

e
(m

se
c)

of vehicles

G-ERMP RSU-Base

(a)

0

20

40

60

80

100

120

100 150 200 250 300 350 400 450 500 550V
eh

ic
le

s w
ith

 n
eg

at
iv

e
ba

la
nc

e
(%

)

of vehicles

G-ERMP RSU-Base

(b)

Figure 4: The effect of the number of vehicles on (a) the execution time of the algorithm, (b) the percentage of vehicles
with negative balance.

0

0.002

0.004

0.006

0.008

0.01

100 150 200 250 300 350 400 450 500 550

C
V

of vehicles

G-ERMP RSU-Base

(a)

0
10
20
30
40
50
60
70
80
90
100

100 150 200 250 300 350 400 450 500 550

E
ne

rg
y

sa
vi

ng
 (%

)

of vehicles

G-ERMP RSU-Base

(b)

Figure 5: The effect of the number of vehicles on (a) the Coefficient of Variance (CV) of energy balance, and (b) the energy
savings.

offload their workload. This behavior, as Figure 5(b) shows,
translates in a stable 50% energy savings with G-ERMP
and a decreasing amount of savings for RSU-Base with an
increasing number of vehicles.

These experiments show that the proposed algorithm, G-
ERMP, allows vehicles to achieve energy savings indepen-
dently from the number of vehicles to manage.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed G-ERMP, an energy-
aware resource management algorithm for VEC systems.
We have evaluated G-ERMP by performing an extensive
experimental analysis on several problem instances. The
results have shown that the proposed algorithm has a reason-
able execution time and allows vehicles to achieve 15-85%
computational energy savings compared to a baseline that
executes workload locally and 51% more energy savings
compared to a baseline that offloads vehicles’ workloads
only to RSUs. In our future research we plan to develop
the cell partitioner, which partitions the vehicles and as-
signs them to the edge-cells guaranteeing that each vehicle
remains in the assigned edge-cell for most of the cell parti-
tioner time period. In addition, we plan to improve G-ERMP
to (i) formally guarantee the minimum computational energy
consumption for any data transmission size, (ii) further
reduce its execution time, (iii) explore the possibility of
splitting large requester workloads, and (iv) allow provider

vehicles to temporarily increase their default computing
frequency level.

ACKNOWLEDGMENT

This work was supported by the NSF under grant no. IIS-
1724227.

REFERENCES

[1] DSRC Technology. https://www.auto-talks.com/technology/
dsrc-technology.

[2] IBM ILOG CPLEX V12.1 user’s manual. ftp://ftp.software.
ibm.com/software/websphere/ilog/docs/, 2009.

[3] T. Bahreini, M. Brocanelli, and D. Grosu. Technical
report. https://www.dropbox.com/s/v39r0z4lf68l4vo/Tech
Report.pdf?dl=0.

[4] E. Björnson and E. G. Larsson. How energy-efficient can a
wireless communication system become? In ACSSC, 2018.

[5] Z. Jiang, S. Zhou, X. Guo, and Z. Niu. Task replication
for deadline-constrained vehicular cloud computing: Optimal
policy, performance analysis, and implications on road traffic.
IEEE Internet of Things Journal, 5(1):93–107, 2018.

[6] L. Li, X. Zhang, K. Liu, F. Jiang, , and J. Peng. An energy-
aware task offloading mechanism in multiuser mobile-edge
cloud computing. Mobile Information Systems, 2018:3–15,
April 2018.

9

[7] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque,
L. Tang, and J. Mars. The architectural implications of
autonomous driving: Constraints and acceleration. In ACM
SIGPLAN Notices, volume 53, pages 751–766. ACM, 2018.

[8] O. Muñoz, A. Pascual-Iserte, and J. Vidal. Optimization of
radio and computational resources for energy efficiency in
latency-constrained application offloading. IEEE Transactions
on Vehicular Technology, 64(10):4738–4755, 2015.

[9] S. Sardellitti, G. Scutari, and S. Barbarossa. Joint optimization
of radio and computational resources for multicell mobile-
edge computing. IEEE Transactions on Signal and Informa-
tion Processing over Networks, 1(2):89–103, 2015.

[10] Y. Sun, J. Song, S. Zhou, X. Guo, and Z. Niu. Task replication
for vehicular edge computing: A combinatorial multi-armed
bandit based approach. arXiv preprint arXiv:1807.05718,
2018.

[11] H. Trinh, D. Chemodanov, S. Yao, Q. Lei, B. Zhang, F. Gao,
P. Calyam, and K. Palaniappan. Energy-aware mobile edge
computing for low-latency visual data processing. In FiCloud,
2017.

[12] H. Viswanathan, E. K. Lee, I. Rodero, and D. Pompili.
Uncertainty-aware autonomic resource provisioning for mo-
bile cloud computing. IEEE Trans. on Parallel and Dis-
tributed Syst., 26(8):2363–2372, 2015.

[13] R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang. To-
ward cloud-based vehicular networks with efficient resource
management. IEEE Network, 27(5):48–55, September 2013.

[14] R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang. To-
ward cloud-based vehicular networks with efficient resource
management. IEEE Network, 27(5):48–55, 2013.

[15] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang. Energy-efficient offloading for
mobile edge computing in 5g heterogeneous networks. IEEE
Access, 4:5896–5907, 2016.

[16] K. Zheng, H. Meng, P. Chatzimisios, L. Lei, and X. Shen.
An smdp-based resource allocation in vehicular cloud com-
puting systems. IEEE Transactions on Industrial Electronics,
62(12):7920–7928, 2015.

[17] C. Zhu, G. Pastor, Y. Xiao, Y. Li, and A. Ylae-Jaeaeski. Fog
following me: Latency and quality balanced task allocation
in vehicular fog computing. In SECON, 2018.

10

