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Abstract—In this paper, we address the problem of appli-
cation placement in MEC systems that takes into account the
risk of exceeding the energy budget of the edge servers. We
formulate the problem as a chance-constrained program, where
the objective is to maximize the total quality of service in
the system, while keeping the expected risk of exceeding the
edge servers’ energy budget within an acceptable threshold.
We develop a learning-based method to solve the problem
which requires a very small execution time for large size
instances. We evaluate the performance of the proposed method
by conducting an extensive experimental analysis.

Keywords-Mobile edge computing; risk-aware application
placement; stochastic optimization, machine learning.

I. INTRODUCTION

Mobile Edge Computing (MEC) has been introduced
with the aim of providing services to mobile users with
a lower latency compared to the centralized data centers,
which is based on the idea of bringing servers closer to the
end users [1], [2]. Thus, a lower communication latency is
expected to be achieved by locating the servers at the edge
of the network. Due to the fact that MEC servers are more
restricted in terms of computational capacity compared to
the cloud servers, the resources must be utilized efficiently
in order to take full advantage of these systems. One of the
key decisions determining the efficiency of MEC systems
is how to allocate applications to servers. Given the fact
that MEC servers have a restricted energy budget, allocating
too many tasks to those servers can result in the failure
of services. On the other hand, an inefficient application
placement employed by service providers can significantly
impact the Quality of Service (QoS).

What makes the application placement in MEC systems
more challenging is the existence of nondeterministic pa-
rameters such as the size of requests, the reliability of
the network, and the movement of users. Due to the high
volatility of the MEC systems, any optimal application
placement might turn to a non-optimal or even infeasible
placement in few seconds. Thus, to make an application
placement reliable one needs to take the uncertainties of
the network into account when placing applications on edge
servers.

Several researchers have recently addressed the applica-
tion placement problem in MEC from different perspectives
and employed a wide range of methods. Due to the fact
that the main goal of MEC systems is to reduce latency,
many researchers have devoted their efforts to developing
methods for improving the QoS. Ouyang et al. [3] proposed
a service placement method which jointly optimizes users’
perceived-latency and service migration costs. Maia et al. [4]
proposed two algorithms for IoT service placement, where
the objective is to minimize the potential violation of QoS
requirements. Wang et al. [5] modeled the application place-
ment as a graph problem and proposed an algorithm to find
the optimal placement of a linear application graph. They
also proposed online approximation algorithms for applica-
tion placement. Sodhro et al. [6] proposed an algorithm for
optimization of QoS in MEC-based medical video stream
applications.

The necessity of improving the efficiency of energy con-
sumption in MEC systems motivated researchers to take the
energy consumption into account in the design of application
placement algorithms [7]. Bahreini et al. [8] addressed the
problem of energy-aware capacity provisioning and resource
allocation in MEC systems. The objective in their proposed
algorithm is to maximize the net profit of the service
provider, where the profit is the difference between the
aggregated users’ payments and the total operating cost
due to energy consumption. Badri et al. [9] considered the
mobility of users in MEC as a non-deterministic parameter
and proposed a multi-stage stochastic program for energy-
aware application placement.Yang et al. [10] proposed an
algorithm for resource management in MEC networks where
the objective is to minimize the power utilization. The
authors took latency and coverage into account in their
proposed algorithm.

One of the key assumptions in the above-mentioned works
is that the workload of mobile applications is known prior
to allocating it to servers. However, this assumption might
not be valid for many applications, that is, when a request
is received by the MEC system, the workload is unknown.
Compared to the cloud servers, MEC servers are expected
to be more restricted in terms of capacity, that is, the



risk of exceeding the energy budget of servers is higher
in MEC servers. Exceeding the energy budget may result
in increased failure risk. One possible solution is to have
a recovery scheme in place and offload the workload of
an overloaded edge server to other servers with enough
available capacity [11]. However, this approach does not
manage the risk and might result in higher latency due to
migrations. In order to manage the risk of exceeding the
energy budget, one has to take the variance of workloads
into account when allocating requests to MEC servers.
Disregarding the stochasticity of applications’ workloads
might end up in either under-utilized servers or high failure
risk. To the best of our knowledge, no application placement
algorithm has been proposed that takes uncertainty of the
loads into account and manages the risk of exceeding the
energy budget of servers in MEC systems.

Contributions. We propose a novel risk-based optimization
approach to application placement in MEC that takes into
account the risk of exceeding the energy budget of edge
servers when making allocation decisions. Our objective
is to maximize the QoS of the system which is defined
with respect to the communication latency and is the sum
of QoS of individual requests who receive services. We
also take into account the risk of exceeding the energy
budget of edge servers with the aim of controlling the
failure risk. Because the resource requirements of mobile
applications are stochastic parameters, and in order to con-
trol the risk of exceeding the energy budget of the edge
servers, we formulate the application placement problem as
a chance-constrained stochastic program. To solve the prob-
lem, we employ the Sample Average Approximation (SAA)
method [12] and develop a fast machine learning-based
optimization method to solve fairly large size instances.
We develop a model using some basic features that can be
used for application placement without having to solve any
optimization problems online. We also propose a method
where in addition to the basic features, some additional
features from the solution of the linear programming (LP)
relaxation of the problem are used to train the placement
model. We evaluate the efficiency of the proposed approach
by conducting an experimental analysis on instances with
various problem settings based on real-world data.

Organization. The rest of this paper is organized as follows.
Section II defines the problem and presents the risk-based
optimization model. Section III is devoted to the description
of our learning-based application placement method. Sec-
tion IV describes the experimental setup and analyzes the
results. Finally, Section V concludes the paper and presents
possible directions for future research.

II. RISK-BASED OPTIMIZATION MODEL

We consider a MEC system composed of edge servers and
a cloud data center. The cloud servers situated in the data

center are abstracted as a single cloud server of large capac-
ity denoted by Sc. There are Me servers at the edge level.
The set of servers at the edge level is denoted by Me =
{S1, S2, . . . , SMe}, while the set of all servers including
the cloud server is denoted byM = {S1, S2, . . . , SMe , Sc}.
These servers provide computing resources to a set U =
{U1, U2, . . . , UN} of N independent requests from mobile
users. The MEC network model assumes that all cell towers
are accessible to all users in the network, and that the cloud
server is accessible through the cell towers. Our model is
analogous to the network model considered in [3]. In our
model, edge server Sj is co-located with a base station and
is characterized by its computational capacity, Cj , and its
energy budget, Ej expressed in Joules. The computational
capacity Cj is the maximum number of unit-size containers
that server Sj can host. The unit-size containers have a fixed
resource configuration which is determined by the provider.
The cloud server is located in a geographical area at a large
distance from the users, and the cloud server is assumed
to have enough capacity to handle all the requests from
mobile users. We denote the distance from user i to server Sj
by dij . The request Ui of user i is to offload and execute
an application (a single container) on the edge or the cloud
servers via 4G/5G/WiFi access networks. The request Ui
is characterized by two parameters, (i) the amount of trans-
ferred data ti, and (ii) the size of the requested container Ri,
which is expressed in terms of the equivalent number of unit-
size containers needed to execute the application. We assume
that each created container serves only one request. We
formulate the energy-aware application placement problem
in MEC systems as a chance-constrained stochastic program.
Chance-constrained stochastic programming was introduced
by Charnes et al. [13] and has been employed extensively
in a variety of applications.

The objective function is to maximize the quality of
service of the system, which is defined as the sum of the
QoS of individual requests who receive services. Here, we
define the QoS based on two important factors that determine
the latency, the distance between user and server, and the
size of the transferred data from the mobile device to the
system. Thus, the quality of service that user Ui receives
from server Sj is defined as, Qij = ti

dij
, where, ti is the

size of data transferred from user i, and dij is the distance
between user i and server Sj . In other words, the quality
of service Qij that request Ui receives from server Sj is
inversely proportional to the distance between the user and
the server that provides the service, and directly proportional
to the size of the transferred data. Here, we assume that
the distance between users and servers is the Manhattan
distance. Therefore, if user i is located at (au, bu) and
server Sj is located at (as, bs), then the distance between the
user and the sever is given by |au−as|+|bu−bs|. We assume
that the amount of energy utilized by the request Ui when



it runs on server Sj is given by γ·Ri

Cj
, where γ is a constant

coefficient. Thus, the energy utilized by the request Ui when
it runs on server Sj is directly proportional to the fraction
of Sj’s capacity utilized by the request [14].

We formulate the energy-aware application placement as
a chance-constrained integer program as follows.

Maximize
∑
i∈U

∑
j∈M

ti
dij
· xij (1)

Subject to:

p

{∑
i∈U

γ ·Ri
Cj

· xij ≤ Ej

}
≥ (1− α), ∀j ∈Me

(2)∑
j∈M

xij = 1, ∀i ∈ U (3)

xij ∈ {0, 1}, ∀i ∈ U , j ∈M (4)

where xij is a binary variable, that is 1 if the request of user i
is allocated to server Sj and, 0 otherwise. Constraint (2)
ensures that the probability of loading an edge server beyond
its energy budget is not greater than the risk factor α.
Constraint (3) ensures that each request is satisfied and is
not allocated to more than one server. Finally, Constraint (4)
guarantees the integrality of the decision variables.

Chance-constrained stochastic programs may be ex-
tremely hard to solve, due to the nonconvexity and feasibility
checking issues. Several approaches have been proposed
to solve chance-constrained programs efficiently [12], [15],
[16]. Here, we employ the Sample Average Approximation
(SAA) method which is a Monte Carlo simulation-based
approach to solve chance-constrained programs [17]. In
SAA, the actual distribution in the chance constraint is
replaced by an empirical distribution of a random sample.
In the following, we present the SAA formulation of the
problem.

Let us define the unutilized energy budget of server Sj
as,

Gj(x,Θ
ξ) = Ej −

∑
i∈U

γ · R̃ξi
Cj

· xij , ∀j ∈Me (5)

where, R̃ξi is the realization of parameter Ri based on
scenario ξ on the size of requests. Then, we can formulate
the SAA problem as a mixed-integer program (MIP),

Maximize
∑
i∈U

∑
j∈M

ti
dij
· xij (6)

Subject to:

Gj(x,Θ
ξ) ≥W · zξ, ∀j ∈Me, ξ ∈ Θ (7)∑

ξ∈Θ

zξ ≤ α · ϕ (8)∑
j∈M

xij = 1, ∀i ∈ U (9)

xij ∈ {0, 1}, ∀i ∈ U , j ∈M (10)
zξ ∈ {0, 1}, ∀ξ ∈ Θ (11)

where the objective function in Equation (6) is the same
as that of the original chance-constrained model in Equa-
tion (1). In Constraint (7), W is a very large negative integer,
and zξ is a binary variable. If zξ is 1, the energy budget con-
straint can be violated under realization of scenario ξ, and if
it is 0, otherwise. Also, Θ is the independent identically dis-
tributed (iid) sample of ϕ realizations of R̃ξi . Constraint (8)
guarantees that the number of violated capacity constraints is
not greater than α·ϕ. Constraints (9) and (10) were described
in the chance-constrained model. Constraint (11) guarantees
the integrality of zξ.

III. LEARNING-BASED APPLICATION PLACEMENT

An efficient application placement algorithm for MEC
systems has to be very fast to be useful in practice. Since
the proposed SAA program is a MIP model, it might not
be feasible to obtain the optimal solution in a reasonable
amount of time, especially with a large number of users.
In this research, we develop a fast machine learning-based
algorithm to solve the SAA model.

In recent years, several researchers have attempted to
leverage machine learning techniques to either solve combi-
natorial optimization problems or improve the performance
of solvers on these problems. Alvarez et al. [18] developed
a method for variable branching in branch-and-bound which
is based on imitating the decisions taken by a strong branch-
ing strategy with an approximation. The approximation
is obtained via a machine learning technique from a set
of observed branching decisions taken by strong branch-
ing. Khalil et al. [19] also proposed a machine learning
framework for variable branching in MIP. Kool et al., [20]
proposed an algorithm based on reinforcement learning to
solve combinatorial optimization problems. Nazari et al. [21]
also developed a framework for solving the vehicle routing
problem using reinforcement learning. Bertsimas and Stel-
lato [22] focused on Mixed-integer Quadratic Optimization
problems and transformed the optimization algorithm to
a multi-class classification problem. They proposed a fast
online optimization algorithm consisting of a feedforward
neural network evaluation and a linear system solution.
Bengio et al. [23] surveyed the recent attempts at leveraging
machine learning to solve combinatorial optimization prob-
lems.



Figure 1: Learning-based Application Placement (LBAP) Framework.

Here, we leverage machine learning techniques to develop
a Learning-based Application Placement (LBAP) algorithm
which is a very fast algorithm to solve the SAA model for
the energy-aware application placement in MEC systems.
The framework of the LBAP algorithm is illustrated in
Figure 1. It consists of two major components, offline and
online. The role of the offline component is to create a
classification model based on the historical data on the size
of the transferred data as well as the resource requirements
of applications. In this classification model, each request is
considered as an observation, a server is considered as a
class, and the true class of each observation (request) is the
allocated server according to the optimal solution. Later in
this section, we will describe the features, the target vari-
ables, and the structure of the training set. The output of the
offline component, which is a trained classification model,
is employed in the online component for the placement of
requests.

The first step in the offline component is to estimate
the Probability Distribution Function (PDF) of the resource
utilization of applications. Then, the PDF is used to generate
scenarios for the resource requirements of applications (R̃ξi ).
Once the scenarios are generated using the PDF, a problem
instance is created. Since in the classification model, the
true class of each observation (request) is the allocated
server according to the optimal solution, an exact solution
method has to be employed in order to label observations.
We also solve the Linear Programming (LP) relaxation
model of the problem to extract some features from the
solution of this model which will be used to improve the
accuracy of the classification model. The LP relaxation
model is created by replacing Constraint (10) and (11) with,
xij ≥ 0, ∀i ∈ U , j ∈ M, and zξ ≥ 0, ∀ξ ∈ Θ. Finally,
features and the target values corresponding to the current
problem instance are added to the training set. The process
described above is repeated multiple times and for instances
of different sizes. Once the training set is large enough,
we use a multi-class classification method to create the
classification model. Since this procedure is performed in an
offline fashion, the complexity of the solution algorithm and

the classification method is not a challenge. In our proposed
approach, it is assumed that the number of servers is fixed,
but every time, the MEC system might receive a different
number of requests.

The online component of the LBAP uses the classification
model for application placement in an online fashion. Every
time the MEC system receives a batch of requests, it gener-
ates scenarios for the resource requirements of the received
requests. We should note that the size of the transferred
data is deterministically known at this stage. Then the LP
relaxation model is solved and the value of all the features
are obtained. The trained classification model is then used
for application placement.

Training set. In the training set, each row (observation)
corresponds to one request. Let us denote the observation
corresponding to request Ui by tuple (Fi, yi), where Fi
is the set of features corresponding to user i, and yi is
the target variable which is the label of each request. The
label of each request is the index of the allocated server
and is obtained by solving the SAA model of the applica-
tion placement problem and finding the optimal placement.
Therefore, yi = arg maxj x̄ij , where, x̄ij is the optimal
solution of the SAA problem. The set of features needs to
be carefully created such that the structure of the instance
and the main characteristics of each request are captured
accurately. Since the LBAP model should be capable of
solving instances of different sizes without having to be
trained for all the possible sizes, all the features should be
defined to be independent of the size of the instance.

The first subset of features is created using statistics of
the chance constraint. We denote by

f
(1)
ijξ =

γ · R̃ξi /Cj
Ej

, ∀j ∈Me, ξ ∈ Θ, (12)

the ratio of the energy consumed by request Ui on
server Sj and the energy budget of Sj . The features in this
subset are, mini∈U

{
f

(1)
ijξ

}
, maxi∈U

{
f

(1)
ijξ

}
, σi∈U

{
f

(1)
ijξ

}
,

µi∈U

{
f

(1)
ijξ

}
, where σi and µi denote the standard deviation



and the mean value. The values of the features in this subset
are identical across all the requests.

The second subset of features consists of statistics of
requests. We normalize these features to make them inde-
pendent of the size of instances. We denote by

f
(2)
ijξ =

γ · R̃ξi /Cj∑
i∈U γ · R̃

ξ
i /Cj

, ∀j ∈Me, ξ ∈ Θ, (13)

the normalized energy consumed by request Ui on
server Sj . The features in this subset are, mini∈U

{
f

(2)
ijξ

}
,

maxi∈U

{
f

(2)
ijξ

}
, σi∈U

{
f

(2)
ijξ

}
, µi∈U

{
f

(2)
ijξ

}
, where σi

and µi denote the standard deviation and the mean value
of the feature. Similar to the first subset of features, the
value of the features in this subset are identical across all
the requests.

The third subset of features captures the main statistics
corresponding to each request. We denote by

f
(3)
ijξ =

ti/dij

γ · R̃ξi /Cj
, ∀j ∈Me, ξ ∈ Θ, (14)

the ratio of the QoS of user i when the request is allo-
cated to server Sj and the energy consumed by request Ui
on Sj . In contrast to the first two sets of features, this
subset consists of features that might have different values
across requests. These features are normalized to make them
independent of the size of instances. The features in this
subset are, minξ∈Θ

{
f

(3)
ijξ

}
, maxξ∈Θ

{
f

(3)
ijξ

}
, σξ∈Θ

{
f

(3)
ijξ

}
,

µξ∈Θ

{
f

(3)
ijξ

}
, where σi and µi denote the standard deviation

and the mean value of the feature.
The fourth subset of features consists of the normalized

value of the transferred data size that is generated for all
possible combinations of (Ui, Sj). The features in this subset
are,

f
(4)
ij =

ti/dij∑
k∈U tk/dkj

, ∀i ∈ U , j ∈Me. (15)

The last subset of features corresponds to the value of
the decision variables in the optimal solution of the LP
relaxation model,

f
(5)
ij = ẋij , ∀i ∈ U , j ∈M, (16)

where ẋij is the value of xij in the optimal solution of the
LP relaxation model.
Machine learning algorithm. In LBAP, we employ multi-
class classification to obtain allocation of requests to servers.
The multi-class classification problem is to assign each
observation into one of the classes [24]. In LBAP, each
request is considered as an observation, and servers are the
classes. Since each request can be allocated to any server,
we take the allocation obtained in the optimal solution of the
SAA model as the true classification. To create the LBAP
function, we use the XGBoost package [25] which is based

on a tree boosting algorithm and has been widely employed
for classification problems in several applications.

IV. EXPERIMENTAL ANALYSIS

To evaluate the performance of the proposed application
placement algorithm (LBAP), we perform an extensive
experimental analysis using real-world data. We aim at
evaluating the quality of solutions and the running times
of the proposed method for problem instances of different
sizes. We investigate the performance of the LBAP model
when only basic features are considered in the classification
model, and evaluate the impact of considering features from
the solution of the LP relaxation model in addition to the
basic features.

A. Experimental setup

For our analysis, we consider a MEC system with five
edge servers and a cloud server which is located far from the
users’ area. We consider that the edge servers are co-located
with the base stations. For the edge servers, we choose the
Dell PowerEdge R740 Rack Server (Intel Xeon Gold 6240,
2.4GHz, 24 cores, 32GB RAM).

In our analysis, the number of requests ranges from 100 to
1000. In order to ensure high quality services, we define the
unit-size container according to the computational capacity
of a single core, and at most one container is allocated to a
core. Therefore, the computational capacity, Cj , of a server
is equivalent to the number of CPU cores. According to a
survey on data centers energy consumption [26], the idle
power of an edge server accounts for 60% of the full state
power. Thus, in our setting, the energy budget of a server
(in Joules) for a time slot is: Ej = 0.4 × 495W × 120s =
23, 760 J, where 495 W is the total power consumption of
a Dell PowerEdge R740 Rack Server, and 120 seconds
represents the length of the time slot considered in the
experiments.

We assume that if a core is utilized, it requires full
power. Therefore, the power of each core is obtained by
dividing the total power of a server by the number of
cores. Based on this assumption the power of each core of
the PowerEdge R740 Rock server is 20.625 W. We also
assume that when a container is allocated to multiple cores,
all the cores are fully utilized. Therefore, the utilization
rate of a server can be simply obtained by dividing the
allocated cores by the total number of cores. We use the
dataset on smartphones [27], to estimate the PDF of the size
of the containers requested by users. In order to generate
scenarios, we use the Categorical distribution, where each
category corresponds to each possible size of requests. The
probability of each category is obtained by dividing the
number of observations of that category in the dataset by
the total number of observations in the dataset. Throughout
the experiments, the sample size is 50 scenarios.
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Figure 2: Service ratio & QoS ratio vs. number of users
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Figure 3: Service ratio & QoS ratio vs. number of users: unobserved size of instances

We compare the performance of LBAP with that of the
optimal placement obtained by solving the problem with
CPLEX [28] considering two main metrics. The first metric
is the Service Ratio (SR) which is defined as the fraction
of the total requests allocated to edge servers, that is,
SR =

∑
i∈U

∑
j∈Me xij

N , where, xij is 1 if request Ui is
allocated to the edge server Sj , and 0 otherwise. The second
metric is the QoS Ratio, which is defined as, ρ = QLBAP

QCPLEX

where, QCPLEX is the optimal value of the QoS obtained
by CPLEX, and QLBAP is the value of the QoS obtained
by LBAP. For the experiments involving CPLEX, we use the
CPLEX 12 solver provided by IBM ILOG CPLEX optimiza-
tion studio for academics initiative [28]. Each experiment is
performed five times and the analysis is conducted based on
the average value of the metrics.

B. Experimental results

We perform our analysis using two different approaches.
First, we investigate the performance of the proposed method
by not considering the features from the solution of the
LP relaxation model. We aim at investigating the accuracy
of the LBAP model when only features from the SAA
MIP model are included in the classification model. In this
approach, we do not need to solve the LP relaxation model,
and the placement is obtained without having to solve any
optimization model in the online fashion. In the second
part of our experimental analysis, we include the features
from the solution of the LP relaxation model. Based on
this approach, once the system receives the requests, the
LP relaxation model is solved and the optimal value of

the decision variables are used as features to generate the
placement using the LBAP model.

We perform our analysis on instances of various sizes,
where the size of an instance is specified by the number
of users. In these experiments, the number of users ranges
from 100 to 1000. Figure 2 compares the service and QoS
ratios obtained by LBAP with the optimal ratios obtained
by solving the MIP model using the CPLEX solver. In
Figure 2a, we observe that the service ratio decreases as the
number of users increases. The reason is that the capacity
of the edge servers is fixed, and therefore as the number of
users increases, a smaller fraction of them can be allocated
to the edge servers. In most cases, the performance of
the LBAP method based on the service ratio is within 0.1
distance from the optimal solution. Figure 2b shows the
service ratio obtained by LBAP, where the LP relaxation
features are used in addition to the basic features in the
classification model. As expected, LBAP performs signifi-
cantly better when the LP relaxation features are used in the
classification model, and the service ratio obtained by LBAP
is fairly close to that of CPLEX. In few instances, we
observe that LBAP obtains a slightly higher service ratio
compared to CPLEX. One possible reason for this is that
a higher service ratio might not necessarily yield a higher
QoS, which is the objective of the problem. Given this fact,
CPLEX might obtain a solution that has a smaller fraction
of users allocated to edge servers, but QoS of the system is
maximized.

Figure 2c shows the performance of LBAP in terms
of QoS. In this figure, we observe that considering only



the basic features, the QoS obtained by LBAP is within
an acceptable distance from the optimal QoS obtained by
CPLEX. In most instances, the QoS obtained by LBAP
considering only the basic features is within 0.5 distance
from the optimal QoS. We do not observe any significant
decrease in ρ with the increase in the number of users.
By including the LP relaxation features, the QoS obtained
by LBAP gets very close to the optimal. We observe that
in few cases the QoS ratio is slightly greater than 1, that
is, the QoS obtained by LBAP is slightly greater than the
optimal QoS obtained by using CPLEX. This indicates that
the placement obtained by LBAP might have a higher risk
of exceeding the energy budget than the placement obtained
by CPLEX. This is not a significant issue, given that the
risk is a soft constraint and could be violated under some
scenarios. This also could be tackled through training the
LBAP classification model with a higher value for the risk
factor, α.

Generalization analysis. In the first set of experiments, the
classification model was trained for all the sizes of instances
in the test set. In the real world, it might not be practical
to train the classification model using all possible sizes of
instances. Therefore, we might need to train a model using
only a subset of sizes. Here, we investigate the performance
of LBAP when it is used for instances with sizes that were
not included in the training set. For this purpose, we train
the model using instances with 100, 300, 500, 700, and 900
requests and test it on instances with 200, 400, 600, 800,
and 1000 requests. We should emphasize that none of the
instances in the test set were included in the training set of
the classification model. This setup provides an insight on
the generalization power of LBAP.

Figure 3 shows the performance of LBAP for unobserved
instances based on the service and QoS ratios. Figure 3a
shows the service ratio versus the number of users when
only basic features are used in the classification model.
We observe that the service ratio of LBAP for unobserved
instances is fairly close to that in the optimal solution.
Figure 3b shows the service ratio when basic and LP
relaxation features are used. We observe that LBAP performs
very well when it is used for the sizes of instances that were
not included in the training set. Similarly to the results in
Figure 2b, we observe that in some instances the service
ratio of LBAP is greater than that of the optimal solution
obtained by CPLEX. The same justification applies here, the
objective is to maximize QoS of the system, and a higher
service ratio does not necessarily result in a higher QoS.
Figure 3c shows the performance of LBAP in terms of the
QoS ratio for unobserved instances. We observe that when
only basic features are used in the classification model, the
QoS obtained by LBAP is within 0.5 distance from the
optimal QoS obtained by CPLEX. Based on these results,
the size of instances does not have a significant impact on ρ.
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Figure 4: Execution time vs. number of users

We observe that with the complete set of features, i.e., basic
and LP relaxation features, the performance of LBAP in
terms of QoS is very close to the optimal solution.

Our experimental results on the generalization power
of LBAP confirm that this method performs very well
when applied to unobserved instances. These results indicate
that LBAP can be trained for a subset of instances and be
efficiently used for any unobserved instances. It is important
to note that the selection of the subset of instances to train
the classification model is of high importance, and can
impact the performance of the method. For example, it might
not be efficient to train the model using only small size of
instances and use it for significantly larger sizes.

Execution time analysis. We now investigate the execution
time of LBAP. Since the execution time for extracting the
features is negligible, we focus our analysis on the execution
time of LBAP with LP relaxation features. For the sake of
fairness, we use the CPLEX solver to solve the MIP model
of the SAA method and the LP relaxation model in LBAP.
Figure 4 compares the execution time required for solving
the MIP model of the SAA method, labeled as CPLEX,
with that of solving LBAP with LP relaxation features. We
observe that the execution time for solving the MIP model
increases at a much higher rate than that of the LBAP
method. We observe that for an instance with 1000 users,
the MIP model is solved in about 100 seconds, while the
LBAP method is solved in about one second. These results
imply that the execution time of LBAP with basic and LP
relaxation features is within an acceptable amount of time
and this method is suitable for deployment in real MEC
systems.

V. CONCLUSION

We developed a risk-based optimization model for appli-
cation placement in edge computing systems and proposed
a Learning-based Application Placement (LBAP) method
which is capable of solving large size problem instances
within a second. We performed an extensive experimental
analysis to investigate the performance of the proposed
method compared to the optimal solution obtained by solv-
ing the MIP model using the CPLEX solver. Our results



showed that LBAP is very efficient for solving large size
problem instances. As a future research, we plan to apply
the proposed method to solve other resource management
problems in MEC systems, where parameters are nondeter-
ministic.
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