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Abstract. Energy consumption plays a key role in determining the cost
of services in edge computing systems and has a significant environmental
impact. Therefore, minimizing the energy consumption in such systems is
of critical importance. In this paper, we address the problem of energy-
aware optimization of capacity provisioning and resource allocation in
edge computing systems. The main goal is to provision and allocate re-
sources such that the net profit of the service provider is maximized,
where the profit is the difference between the aggregated users’ payments
and the total operating cost due to energy consumption. We formulate
the problem as a mixed integer linear program and prove that the prob-
lem is NP-hard. We develop a heuristic algorithm to solve the problem
efficiently. We evaluate the performance of the proposed algorithm by
conducting an extensive experimental analysis on problem instances of
various sizes. The results show that the proposed algorithm has a very
low execution time and is scalable with respect to the number of users
in the system.

1 Introduction

Efficient utilization of computing resources has always been an important chal-
lenge for service providers, leading to significant efforts on developing solutions,
either in the form of new technology or new ways to enhance the efficiency of
existing technologies. Edge Computing (EC) is the latest technology developed
to mitigate some of the existing challenges in cloud computing. In fact, the high
latency in cloud computing systems which stems from the long distance between
cloud servers and the end user, triggered the idea of EC systems, that is, bringing
computing resources closer to the end user. EC systems are expected to improve
the Quality of Service (QoS) by bringing servers closer to the end user, but when
it comes to the cost of services, these systems face an important challenge. The
operating cost of EC systems is higher than that of the remote clouds, due to



the small servers which are distributed across the network. In addition, in EC
systems, a larger number of providers compete to provide services at a lower
cost, and as a result, obtain a higher market share. It might not be quite easy to
lower the investment costs, but when it comes to the operating costs, optimiz-
ing the energy consumption would be a promising way to reduce them. Studies
show that about 25% of the operating costs of cloud data centers is attributed
to energy consumption [10].

Given these facts, researchers have approached the resource provisioning
problem in distributed systems from different perspectives. A variety of algo-
rithms have been proposed to efficiently allocate users’ requests to the cloud
servers with an emphasis on reducing energy consumption of data centers [4,
6, 7, 18]. Several researchers considered task/workload consolidation as a strat-
egy for reducing the energy consumption [12, 15]. Minimizing the total number
of active servers is another strategy considered by some researchers. Torres et
al. [16] proposed a technique to minimize the total number of active servers
without degradation of QoS. Beloglazov et al. [5] and Hameed et al. [11] survey
the research on energy-efficient cloud computing systems.

Several studies have focused on computation offloading in EC systems. Trinh
et al. [17] studied the impact of computation offloading on energy consumption
in EC systems. Chen et al. [8] developed a game theoretic approach for com-
putation offloading in a multi-channel wireless network to minimize the energy
consumption of mobile devices and the processing time of applications. Sardel-
litti et al. [14] and Zhang et al. [19] developed algorithms for decision making
on the computational resources and the radio resources to minimize the system
energy cost while meeting latency constraints. Bahreini and Grosu [3] designed
an iterative matching algorithm for efficient placement of multi-component ap-
plications in edge computing systems. These approaches have only focused on
resource allocation and did not investigate the capacity provisioning in EC sys-
tems.

Anglano et al. [2] developed an algorithm for resource allocation and capacity
provisioning in EC systems with the aim of maximizing the profit of the system.
To the best of our knowledge, this research is the first work addressing the
integrated capacity provisioning and resource allocation in EC systems that takes
the energy consumption into account. However, their proposed algorithm is based
on solving a mixed-integer linear program which might not be feasible to solve
within a reasonable amount of time for large size problems.

Our contributions. In this paper, we address the capacity provisioning and
resource allocation problem in EC systems with the aim of maximizing the net
profit of the provider while taking into account the energy consumption of the
system. Our main contributions are as follows: (i) develop an energy-aware inte-
grated formulation of the capacity provisioning and resource allocation problem
for edge computing systems; (ii) prove that the energy-aware provisioning and
resource allocation problem in edge computing systems is NP-hard; (iii) design
an efficient heuristic algorithm to solve the problem; and (iv) perform an exten-



sive experimental analysis that shows that the proposed algorithm is scalable
with the number of users and produces solutions that are close to optimal.
Organization. The rest of the paper is organized as follows. In Section 2, we
define the problem and characterize its complexity. In Section 3, we describe
our proposed heuristic algorithm. In Section 4, we define the experimental setup
and discuss the experimental results. In Section 5, we conclude the paper and
propose possible directions for future work.

2 Energy-aware capacity provisioning and resource
allocation problem

In this section, we formulate the Energy-aware Capacity Provisioning and Re-
source Allocation (ECPRA) problem in EC systems. We consider an EC system
owned and managed by a single provider that aims at maximizing its net profit
(i.e., the profit per unit of time). In this system, users’ devices generate a high
amount of data that needs real-time processing. To guarantee the QoS for re-
quests, the provider deploys a set of powerful computing resources at the edge
of the network. However, these resources are limited and the provider is not able
to allocate all requests to the edge side. Therefore, some of the requests will be
allocated to the cloud side. On the other hand, the operating cost of edge re-
sources is relatively higher than the operating cost of the cloud resources which
results in a higher price per unit of resource at the edge. The provider’s goal is
to allocate resources to users in order to maximize its net profit, which is the
total payment of users minus the total operating cost of resources per unit of
time.

We denote the edge/cloud levels by ` (i.e., ` = 1 for the edge level, and ` = 2
for the cloud level). The system is composed of M ` physical nodes at each level.
Users can request D types of resources. For the sake of making the presentation
simpler, we assume that D = 3, that is, there are three types of resources that
a user can request: CPU (cores) (k = 1), memory (k = 2), and storage (k = 3).
The capacity of node h at level ` for the resource of type k is denoted by C`hk. We
consider N users requesting resources as containers from the provider. The re-
quest of user i consists of Qi containers and is denoted by Ri = {ri1k, . . . , riQik},
where rijk is the amount of resource of type k requested by user i for container j.
As an example, suppose that user i’s request is Ri = {{4, 6, 0}, {2, 1, 5}}. This
means that the number of containers, Qi, requested by user i, is two (Qi = 2).
The first container requires four cores, 6 GB of memory, and no storage, while
the second container requires two cores, 1 GB of memory, and 5 GB of storage.
The provider allocates a given container to a single node. Also, to have a con-
sistent response time from the physical nodes, the whole request from a user is
allocated at either edge or cloud level, but not at both.

Upon receiving the request, the provider decides how to provision resources
and allocate the users’ requests in order to maximize the total profit, where the
profit is the difference between the payments received form the users and the
operating cost. We consider that the operating cost of a node is proportional to



the energy consumption of that node which can be estimated by a linear function
of CPU, memory, and disk utilization [13, 20]. Therefore, the energy consumption
is captured in the objective function through the operating cost. The operating
cost (due to energy consumption) of a powered-on node h at level ` is given by,

E`h = δ`h +

3∑
k=1

u`hk · ρ`hk (1)

where, δ`h is the operating cost of node h at level ` when it is idle, ρ`hk is the
operating cost of node h for the resource of type k when the resource is fully
utilized, and u`hk is the utilization rate of node h’s resource of type k. The
utilization u`hk is given by,

u`hk =
1

C`hk

N∑
i=1

Qi∑
j=1

z`hij · rijk (2)

where z`hij is a binary variable associated with the allocation of container j of
user i to node h at level `. The value of this variable is 1, if container j of user i
is allocated to node h at level `; and 0, otherwise. Therefore, the total operating
cost of the system is,

E =

2∑
`=1

M`∑
h=1

x`h · δ`h +

2∑
`=1

M`∑
h=1

3∑
k=1

u`hk · ρ`hk (3)

where, x`h is a binary decision variable associated with the status of node h
at level `. Variable x`h is 1 if the node is powered on; and 0, otherwise. These
decision variables determine how many servers will be turned on by the provider,
and therefore represent the capacity provisioning decision.

The provider charges each user a certain amount of money per each unit
of time. The amount of money depends on the level that the user’s request is
allocated and the amount of resources that user requested. Denoting the unit
price of a resource of type k at level ` by π`k, the payment of user i is defined as,

pi =

Qi∑
j=1

3∑
k=1

2∑
`=1

y`i · π`k · rijk (4)

where, y`i is a binary variable, y`i = 1 if user i is allocated at level `; and 0, oth-
erwise. Therefore, we define the net profit, Π, of the provider as the aggregated
users payments minus the total operating cost of nodes,

Π =

N∑
i=1

Qi∑
j=1

3∑
k=1

2∑
`=1

y`i · π`k · rijk −
2∑
`=1

M`∑
h=1

x`h · δ`h

−
N∑
i=1

Qi∑
j=1

3∑
k=1

2∑
`=1

M`∑
h=1

zlhij ·
rijk · ρ`hk
C`hk

(5)



Table 1: Notation
Notation Description

N Number of users.

M ` Number of physical nodes at level `.
D Number of resource types.
Qi Number of containers requested by user i.
rijk Amount of resource of type k from container j of user i.

C`hk Capacity of node h at level l for resource of type k.

δ`h Operating cost of node h at level l in idle mode.

ρ`hk Operating cost of node h at level l for resource of type k fully utilized.

π`k Unit price of resource of type k at level `.

x`h Binary decision variable; status of node h at level `.

z`hij Binary decision variable; allocation of container j of user i.

y`i Binary decision variable; allocation of user i at level `.

To simplify the equations for profit, we define the following parameters:

ω`hij =

3∑
k=1

rijk · ρ`hk
C`hk

and η`i =

Qi∑
j=1

3∑
k=1

π`k · rijk (6)

Now, we formulate the Edge Capacity Provisioning and Resource Allocation
(ECPRA) problem. Table 1 summarizes the notation that we use in our formu-
lation. The mixed-integer linear program (MILP) formulation of ECPRA is as
follows,

ECPRA-MILP:

Maximize

N∑
i=1

2∑
`=1

y`i · η`i −
2∑
`=1

M`∑
h=1

x`h · δ`h −
N∑
i=1

Qi∑
j=1

2∑
`=1

M`∑
h=1

z`hij · ω`hij (7)

subject to:

N∑
i=1

Qi∑
j=1

z`hij · rijk ≤ x`h · C`hk ∀h,∀k, ∀` (8)

y`i ·Qi ≤
M`∑
h=1

Qi∑
j=1

z`hij ∀i,∀` (9)

2∑
`=1

M`∑
h=1

z`hij ≤ 1 ∀i,∀j (10)

x`h ∈ {0, 1}, y`i ∈ {0, 1} ∀h,∀` (11)

z`hij ∈ {0, 1} ∀i, ∀j,∀`,∀h (12)

Equation (7) is the objective function which is the total net profit of the
provider. Constraints (8) ensure that the total allocated resources of each type



on node h at level ` does not exceed the available capacity of that type of
resource. Note that these constraints also determine the mode of the node; if
x`h = 1, the corresponding node is on; otherwise, the node is off and no request
can be allocated to it. Constraints (9) guarantee that user i is allocated at level `
if and only if the whole request of this user is allocated to the nodes situated at
level `. Constraints (10) ensure that no container is allocated to more than one
node. Finally, constraints (11) - (12) guarantee the integrality of the decision
variables.

2.1 Complexity of ECPRA

We prove that ECPRA is an NP-hard problem, that is, it is not solvable in
polynomial time, unless P = NP . We prove this claim by showing that a special
case of this problem is NP-hard.
Theorem. The ECPRA problem is NP-hard.
Proof. Let us consider a special case of ECPRA in which there is only one user
in the system, and there exists only one level of resources. We call this problem
ECPRA-S. We show that ECPRA-S is an NP-hard problem. Then, we conclude
that ECPRA, which is the general case of ECPRA-S, is NP-hard as well.

From Equation (7), the objective of ECPRA-S for user i at level ` is,

Maximize y`i · η`i −
M`∑
h=1

x`h · δ`h −
Qi∑
j=1

M`∑
h=1

z`hij · ω`hij (13)

Since there is only one user in the system, the first term in the objective func-
tion (η`i ) has a fixed value, that is, it does not have any effects on the solution.
Therefore, we can ignore it. Furthermore, for our purpose, we convert the ob-
jective from maximization to minimization. Since i and ` have a fixed value, for
the sake of readability, we define binary variables x̄h and ȳhj , where x̄h = x`h
and z̄hj = z`hij . We also define parameters, δ̄h = δ`h, ω̄hj = ω`hij , r̄jk = rijk and

C̄hk = C`hk. Thus, we can formulate ECPRA-S as,

Minimize

M`∑
h=1

x̄h · δ̄h +

Qi∑
j=1

M`∑
h=1

z̄hj · ω̄hj (14)

subject to:

Qi∑
j=1

z̄hj · r̄jk ≤ x̄h · C̄hk ∀h,∀k (15)

M`∑
h=1

z̄hj ≤ 1 ∀j (16)

x̄h ∈ {0, 1} ∀h (17)

z̄hj ∈ {0, 1} ∀h,∀j (18)



We observe that ECPRA-S is the general case of the Capacitated Facility
Location (CFL) problem [9], where instead of having a single type of goods,
each facility provides different types of goods. In fact, in CFL, there is a set
of facilities (nodes), each facility provides a single type of goods (resources)
with a limited capacity (Constraints (15)). There is also a set of clients (set of
containers), and a client j has a demand, r̄jk. The whole demand of a client must
be assigned to a single facility (Constraints (16)). Each facility has a fixed cost
to be opened, δ̄h. Satisfying the demand of each client from each facility has a
different cost, ω̄hj . The goal is to select a subset of facilities to open, in order to
minimize the sum of the cost of the assignment, plus the sum of facilities’ opening
cost (Equation (14)). CFL is a well-known NP-hard problem [9]. Since ECPRA-S
is a generalization of CFL, ECPRA-S is NP-hard as well. Furthermore, ECPRA is
a generalization of ECPRA-S. Therefore, ECPRA is an NP-hard problem.

3 A greedy algorithm for ECPRA

ECPRA is NP-hard and therefore, it is not solvable in polynomial time, unless
P = NP . We give up on optimality and develop a greedy algorithm, called G-
ECPRA, that provides a suboptimal solution to ECPRA in polynomial time. Our
greedy algorithm is an iterative algorithm; and in each iteration, the allocation
of only one user is determined. In fact, in each iteration of the algorithm, a user
that maximizes the revenue of the system is selected, and then, the algorithm
finds an allocation for that user that minimizes the operating cost of the system.

The proposed algorithm for solving the ECPRA problem is given in Algo-
rithm 1. The algorithm has as input the vector of users’ requests and the capac-
ity of the nodes at each level, and determines the allocation of these requests.
The output of the algorithm consists of the profit of the provider, Π, and the
allocation matrices X = {x`h}, Y = {y`i}, and Z = {z`hij}.

First, G-ECPRA initializes the allocation matrices X, Y , and Z, and the
status matrix S = {s`h} (Line 1). The status matrix indicates the status of the
nodes after the last iteration of the algorithm, that is, s`h = 0 if node h at
level ` is turned on, and s`h = 1 if that node is off. Initially, this matrix is set
to 1, that is, no node is selected to be turned on. G-ECPRA then determines
the average revenue, Γi, that each user can bring to the system (Lines 2-3).
It sorts users in non-increasing order of Γi (Line 4). Then, in each iteration of
the algorithm, an unallocated user with the maximum Γi is chosen in order to
maximize the revenue of the provider. In this step, Algorithm G-CFL is called
twice to determine the possible allocations for the current user at both the edge
level and the cloud level (Lines 6-7). G-CFL gets the request of the user, the
current capacity at level `, and the status of nodes, S, and finds an allocation
for the user at level ` such that the operating cost is minimized. In fact, G-CFL
tries to find a solution for ECPRA-S (we will explain this algorithm in more
details later). X̄` and Z̄` are temporary matrices corresponding to the output
matrices X̄ and Z̄ obtained by G-CFL for the current user at level `, and cost`

is the cost of allocating the current user at level `.



Algorithm 1 G-ECPRA

Input: Users’ requests: {R1, . . . , RN}
Nodes’ capacity: C = {C`hk}

1: Π ← 0, X ← 0, Y ← 0, Z ← 0, S ← 1
2: for i = 1 . . . N do
3: Γi ←

∑Qi
j=1

∑3
k=1

(π1
k+π

2
k)

2
· rijk

4: sort users in non-increasing order of Γi
5: for i = 1 . . . N do
6: for ` = 1 . . . 2 do
7: {X̄`, Z̄`, cost`} ← G-CFL(Ri, C

`, S`)
8: Π` ← η`i − cost`

9: `∗ ← argmax`∈{1,2}Π
`

10: if Π`∗ > 0 then
11: Π ← Π +Π`∗

12: y`
∗
i ← 1

13: for h ∈M `∗ do
14: x`

∗
h ← x̄`

∗
h

15: for j = 1 . . . Qi do
16: z`

∗
hij ← z̄`

∗
hj

Output: X, Y , Z, Π

G-ECPRA determines the possible contribution to the profit by the current
user, Π` = η`i−cost` (Line 8). Then, the algorithm picks the level that yields the
maximum profit (Line 9). If the profit at this level is positive, it means that G-
CFL has found a feasible allocation for this user. In this case, the allocation
matrices X, Y , Z, and the profit of the system are updated (Lines 10-16). If the
profit is negative, it means that G-CFL has not found a feasible allocation for
the user. Therefore, the allocation matrices will not be updated. This procedure
is repeated until all users are considered.

The G-CFL algorithm, presented in Algorithm 2, finds an allocation for user i
at level ` with the minimum operating cost. In fact, G-CFL solves the ECPRA-S
problem. However, in the problem that G-CFL solves, some nodes might have
been turned on due to the allocation of the previous users. Therefore, if any
container of the current user is allocated on these nodes, no fixed cost δ`h, will
be added to the system.

G-CFL has as inputs the request of user i, the current capacity of the nodes
at level `, and the status matrix. It determines the allocation for user i. The
output of G-CFL is the cost of allocating user i at level `, and the allocation
matrices Z̄ = {z̄jk} and X̄ = {x̄h}.

First, G-CFL creates a set of unallocated containers, R. Initially, R contains
all user i’s containers (Line 2). Then, the algorithm computes the cost of assign-
ing each container on each node. For this purpose, function available is called
(Line 6) to check whether node h has enough capacity for container j. If there are
enough resources, then the cost of the assignment is given by s`h · δ`h+ω`hij . Oth-



Algorithm 2 G-CFL

Input: Request of user i; Ri = {rijk}
Nodes’ capacities at level `; C` = {C`kh}
Status of nodes at level `; S` = {s`h}

1: Π ← 0, X̄ ← 0, Z̄ ← 0
2: R← {1, . . . , Qi}
3: C̄ ← C`

4: for each j ∈ R do
5: for h = 1, . . . ,M ` do
6: if available(Ĉh, j) then
7: costhj ← x̄`h · δ`h + ω′hj
8: else
9: costhj ←∞

10: while R 6= ∅ do
11: (h∗, j∗)← argmin(h,j)(costhj)
12: if costh∗j∗ 6=∞ then
13: C̄h∗ ← C̄h∗ − rij
14: z̄h∗j∗ ← 1
15: x̄h∗ ← 1
16: cost← cost+ costh∗j∗

17: remove j∗ from R
18: for each j ∈ R do
19: if available(C̄h∗ , j) then
20: costh∗j ← ω′h∗j

21: else
22: costh∗j ←∞
23: else
24: cost←∞
25: break;

26: if cost 6=∞ then
27: for h = 1, . . . ,M ` do
28: C`h ← C̄h
29: if x̄h = 1 then
30: s`h ← 0

Output: X̄, Z̄, cost

erwise, the cost of the assignment is infinity, which means that the assignment
is infeasible (Lines 4-9).

Then, G-CFL assigns containers to the nodes iteratively. In each iteration,
it chooses a pair of node and container (h∗, j∗) that has the minimum value
of assignment cost (Line 11). If costh∗j∗ is not infinity, it means that assigning
container j∗ to node h∗ at level `∗ is feasible. In this case, the algorithm updates
the capacity of the node, temporarily. Matrices X̄ and Z̄ and the cost of the
system are also updated (Lines 12-16). Then, the algorithm removes container j∗

from R (Line 17). After that, it updates the cost of assigning each remaining
container to node S`h∗ . Since this node is on now, the fixed cost must not be



considered in any other assignments of this node. The algorithm also checks if
by this assignment, there are not enough resources for a container, then the
cost of the further assignment is set to infinity (Lines 19-22). If the cost of
assignment for (h∗, j∗) is infinity, it means that the minimum assignment cost
is infinity. Therefore, the algorithm could not find a feasible assignment for
this container and any other containers. Thus, it sets the total assignment cost
to infinity, exits from the loop, and does not continue finding allocations for
other containers (Lines 23-26). Outside the loop, the algorithm checks the value
of cost. If it is not infinity, the allocation matrix, status matrix, and capacity
are updated (Lines 26-30).

We now analyze the time complexity of the algorithm. In the analysis we
use the following notation: M = max`M

` and Q = maxiQi. In G-CFL, the
initialization (Lines 1-3) takes O(DMQ). The while loop of G-CFL takes O((M+
D)Q2). Since D (the number of resource types) is small compared to M and Q,
the time complexity of G-CFL is O(MQ2). The most time consuming part of
G-ECPRA is the call to G-CFL for each user and for each level. Therefore, the
time complexity of G-ECPRA is O(NMQ2).

4 Experimental results

In this section, we present an experimental analysis of the performance of our
proposed algorithm, G-ECPRA. We compare the performance of G-ECPRA with
the optimal solution obtained by solving ECPRA-MILP with CPLEX [1]. Then,
we investigate the scalability of G-ECPRA for large size instances. In the follow-
ing, we describe the experimental setup and analyze the experimental results.

4.1 Experimental setup

We generate several problem instances with different values for the number of
users, N , the number of resource types, D, and the amount of resources requested
by each user, rijk. In the first set of experiments, we compare the performance
of G-ECPRA with that of the CPLEX solver. Since the CPLEX solver cannot
solve large size problem instances, we perform this analysis on relatively small
size problem instances. We assume that there are a few nodes available at the
edge level and the cloud level (M1 = 5, M2 = 10). For these problem instances,
the number of users varies from 10 to 100, and there are four types of resources,
i.e., CPU, memory, storage, and bandwidth. The value of rijk is chosen from a
uniform distribution U [0, RB], where RB is an upper bound for rijk.

Since the objective of ECPRA-MILP is to maximize the profit, we generate
instances according to a metric called price to cost ratio (PCR). This metric is
defined as the ratio of the average price per unit of resource to the average cost
per unit of resource:

PCR =

∑3
k=1

∑2
`=1

∑M`

h=1 C
`
kh · π`k∑2

`=1

∑M`

h=1(δ`h +
∑3
k=1 C

`
kh · ρ`kh)

(19)



Table 2: Simulation parameters
Param. Distribution Param. Distribution

C1
hk U [1, 300] PCR ≈ 1 : U [1, 6]

C2
hk U [30, 300] π1

k PCR ≈ 2 : U [3, 10]
Qi U [1, 5] PCR ≈ 7 : U [10, 35]
rijk U [0, RB] PCR ≈ 20 : U [40, 120]
δ1h U [5, 50] PCR ≈ 1 : U [1, 3]
δ2h U [1, 40] π2

k PCR ≈ 2 : U [1, 5]
ρ1kh U [1, 10] PCR ≈ 7 : U [3, 20]
ρ2kh U [1, 5] PCR ≈ 20 : U [10, 80]

Table 2 shows the probability distributions used to generate the parameters
in our experiments. We denote by U[x, y] the uniform distribution on the interval
[x, y]. To generate problem instances with different values of PCR, the price per
unit of each type of resources is drawn from different distributions.

The performance of G-ECPRA is evaluated by computing the profit ratio, Πr,
which is the ratio of the value of the solution obtained by G-ECPRA, denoted
by Π, and that of the optimal solution obtained by CPLEX, denoted by Π∗,
i.e., Πr = Π

Π∗ .

In the second set of experiments, we investigate the scalability of G-ECPRA
for large size problem instances. We consider a system with 50 servers at the
edge level, and 100 servers at the cloud level (M1 = 50, M2 = 100). There are
four types of resources, and the number of users ranges from 100 to 1500.

The G-ECPRA algorithm is implemented in C++ and the experiments are
conducted on an Intel 1.6GHz Core i5 system with 8 GB RAM. For solving
G-ECPRA-MILP, we use the CPLEX 12 solver provided by IBM ILOG CPLEX
optimization studio for academics initiative [1].

4.2 Experimental Analysis

We first investigate the effects of the number of users on the performance of G-
ECPRA. For each value of the number of users, we generate two sets of instances
with different values of PCR. In these problem instances, all parameters are
identical except π`k. The value of π`k is chosen according to Table 2, such that
in the first set, PCR ≈ 2, and in the second set, PCR ≈ 20. For these problem
instances, RB ≈ 6.

Figure 1a shows the execution time for each instance. We observe that for
each number of users, the running time of CPLEX for an instance with PCR ≈
20 is less than the instance with PCR ≈ 2. The reason behind this is that when
the PCR is high, the effect of the energy cost of servers on the profit of the
system is not very significant. Thus, the main problem is to decide only on how
to place the requests of each user, either at the edge or at the cloud level, in
order to maximize the total payments. Therefore, the CPLEX solver can solve
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Fig. 1: The effect of PCR on the execution time and profit ratio (small-size
instances)

the problem faster than the case in which we have a balance between cost and
the price of each unit of resources.

Another observation from Figure 1a is with respect to the impact of the
number of users on the running time. The running time of CPLEX (represented
in the figure using a logarithmic scale) increases exponentially, while that of
G-ECPRA increases linearly. Figure 1b shows the profit ratio for each of these
instances. As we observe, the profit ratio for instances with PCR ≈ 20 is higher
than that for the instances with PCR ≈ 2. The reason behind this observation is
that with PCR ≈ 20, minimizing the cost is not so important and the main focus
is on maximizing the total payment. Therefore, G-ECPRA, which decomposes
the main problem into two subproblems obtains solutions that are not far from
solutions of the main problem. Another observation from Figure 1b is that for
both instances, by increasing the number of users, the profit ratio decreases.
Since the capacity of the nodes is identical for all instances, by increasing the
number of users in the system, the allocation becomes more competitive and
it becomes harder to decide how to allocate resources in order to maximize
the profit. However, the solution obtained by G-ECPRA is good. For N = 10
the profit ratio is about 0.95 while for N = 100, it is about 0.6, which is still
reasonable.

Next, we analyze the effects of the number of users on the performance of the
algorithm. But this time, our analysis is based on two sets of problem instances
with different values of the request bound, RB. In fact, we investigate the effects
of RB on the quality of solutions. In the first set, each container has at most
one unit of each type of resources (RB = 1), while in the second set, each
container can contain up to eight units of each type of resources (RB = 8). For
these instances, PCR ≈ 2. Figure 2a shows the running time of CPLEX and G-
ECPRA for each instance. We observe that the running time of G-ECPRA does
not change dramatically and is less than 1 millisecond for all instances. But the
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Fig. 2: The effect of the request size bound, RB, on the execution time and profit
ratio (small-size instances)

running time of CPLEX increases by increasing RB, and for some instances, it
exceeds 2050 milliseconds. The reason behind this behavior is that the complexity
of the problem increases when each container contains more than one unit of
each type of resources. Figure 2b shows that the profit ratio decreases when RB
increases. Since by increasing RB, the complexity of the problem increases, the
solution obtained by G-ECPRA is farther from the optimal solution than in the
case with smaller values of RB. However, the quality of solutions is still very
good (the profit ratio is about 0.98).

In the next set of experiments, we investigate the performance of the al-
gorithm for large-scale problem instances. We define two sets of instances with
PCR ≈ 1 and PCR ≈ 7, respectively. Because for these sets of problem in-
stances the size of problem is large, the CPLEX is unable to obtain the optimal
solution in reasonable amount of time. Figure 3a shows the running time of our
algorithm for these two instances. As we observe, by increasing the number of
users, the running time of our algorithm also increases, but the increase is linear.
Even for these large instances, the running time of our algorithm is under 800
milliseconds, thus, making it suitable for deployment in EC systems.

Since, the CPLEX solver is unable to solve these large size problem instances
in a reasonable amount of time, we cannot compare the profit obtained by G-
ECPRA with that of CPLEX. Figure 3b shows the profit ratio between the profit
obtained for instances with PCR ≈ 1 to the profit obtained for instances with
PCR ≈ 7. We observe that in all cases this ratio is about 0.16 which is very close
to the ratio between the PCR of the two instance sets. This indicates that our
algorithm has a stable behavior and that the value of PCR does not significantly
affect the performance of the algorithm.
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Fig. 3: The effect of PCR on the execution time and profit ratio with respect to
PCR ≈ 7 instances (large-size instances)

5 Conclusion

There is an increasing concern about the energy consumption in edge computing
systems, both from the perspective of the environmental impact as well as busi-
ness competitiveness. In this paper, we proposed an energy-conscious approach
for the capacity provisioning and resource allocation problem in edge computing
systems. We proposed an MILP formulation of the problem and proved that the
problem is NP-hard. In order to solve the problem efficiently, we proposed a
heuristic algorithm and analyzed its performance. Our experimental analysis on
different sizes and various configurations of the problem showed that the pro-
posed greedy algorithm is competitive with the CPLEX solver in terms of both
the computational time and the quality of solutions.

In future work, we plan to develop energy-aware auction based mechanisms
for the capacity provisioning and resource planning in edge computing systems.
Also, we plan to take the uncertainty of demands into account in the energy-
aware capacity provisioning and resource allocation in edge computing systems.
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