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Abstract. In this paper, we address the routing and recharging problem
for electric vehicles, where charging nodes have heterogeneous prices and
waiting times, and the objective is to minimize the total recharging cost.
We prove that the problem is NP-hard and propose two algorithms to
solve it. The first, is an algorithm which obtains the optimal solution
in pseudo-polynomial time. The second, is a polynomial time algorithm
that obtains a solution with the total cost of recharging not greater than
the optimal cost for a more constrained instance of the problem with the
maximum waiting time of (1−ε) ·W , where W is the maximum allowable
waiting time.
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1 Introduction

In the last decade, the increased awareness of the global warming brought at-
tention toward transportation, as this sector accounts for a large amount of
air pollution. In 2018, the share of transportation in greenhouse gas emissions
was 28.2% [11]. The policy of replacing conventional gasoline vehicles with All-
Electric Vehicles (EVs) has been followed by many countries as an effective
approach toward a greener transportation system. EVs, in addition to being en-
vironmental friendly, are more energy efficient. In these vehicles, over than 77%
of the electrical energy from the grid is transmitted to the wheels, while in con-
ventional gasoline vehicles only about 12% - 30% of the energy stored in gasoline
is converted to power at the wheels [3]. Despite the developments in the EVs
technologies over the last decade, these vehicles represent a very small fraction
of the overall vehicle market, even in the countries with the largest emission of
carbon dioxide. In 2018, the penetration rate of EV in the light-vehicle market
of the US and China was only 2.1 and 3.9 percent, respectively [5]. The low
public interest in EVs is partially attributed to the driving range anxiety and
to the lack of extensive charging infrastructure. This challenge has motivated
researchers to devote their efforts to developing efficient optimization methods
for recharging and routing policies for EVs.

In fact, recharging policy optimization for EVs is analogous to refueling pol-
icy optimization for gasoline vehicles. There are factors such as overcharging
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cost and charging waiting time that do not apply to refueling policy optimiza-
tion for gasoline vehicles, but need to be taken into account while optimizing
the recharging policies for EVs. The first effort on investigating the problem of
refueling policy optimization dates back to 1980s, where the aim was to find the
shortest path between two nodes while the vehicle has to visit some intermedi-
ate nodes for refueling [6]. Since then, researchers have attempted to study the
properties of the problem and take multiple factors into account when designing
the refueling policies. Lin [8] studied the properties of the refueling policy op-
timization problem, and based on these properties showed that the problem of
finding the optimal refueling policy can be reduced to the classical shortest path
problem. Khuller et al. [7] studied refueling and routing optimization problems
for conventional gasoline vehicles, assuming that each gas station has a certain
price for gasoline. They considered the problem with the objective of minimizing
the cost of a fixed route and showed that it can be solved in polynomial time. The
authors showed that the problem of finding the cheapest tour while a given set
of locations are visited is NP-complete and developed approximation algorithms
for this problem. Arslan et al. [1] formulated the refueling/recharging policy op-
timization for plug-in hybrid EVs where the vehicle has to visit both refueling
and recharging stations, and the objective is to minimize the total cost which
includes fuel and energy costs, stopping costs, depreciation costs, and battery
degradation costs. Nejad et al. [9] developed one approximation and two exact
algorithms for the routing problem of plug-in hybrid EVs. In addition to the op-
timal route, their proposed algorithms identify the predominant operating mode
for each segment of the path in order to minimize the fuel consumption. In a
recent work, Sweda et al. [10] considered the availability of a charging station at
any point in time as a probabilistic parameter and developed two heuristic meth-
ods to obtain an a priori routing and recharging policy. In real world, recharging
stations might have heterogeneous prices and waiting times. To the best of our
knowledge, no research has been done on the routing and recharging problem
for EVs with heterogeneous prices and waiting times. In this paper, we address
the routing and recharging problem for electric vehicles with the objective of
minimizing the total recharging cost, where charging nodes have heterogeneous
prices and waiting times. We prove that the problem is NP-hard. We propose a
pseudo-polynomial algorithm to obtain the optimal solution. We also propose a
polynomial time algorithm and prove that it obtains a solution with the total
cost of recharging not greater than the optimal cost for a more constrained in-
stance of the problem with the maximum waiting time of (1− ε) ·W , where W
is the maximum allowable waiting time.

2 Problem Definition

We formulate the Electric Vehicle Routing and Recharging Problem (EVRRP).
We consider an EV which is initially fully charged that is going to travel through
a road network (i.e., a directed graph) having n charging nodes v1, . . . , vn. We
do not consider any restriction such as acyclicity and predetermined order of the
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nodes. The EV travels from the start node v1 to the destination node vn. During
the trip from the source to the destination, the EV may need to be recharged
at the charging nodes. The goal is to find a path from the start node to the
destination node as well as a recharging policy for the EV such that the total
cost of recharging is minimized, while the total waiting time for recharging does
not exceed a given value, W .

As the driver selects a path from the start node to the destination node,
she/he must decide whether to stop and recharge at each node, and how much
to recharge at each stop. We assume that the maximum capacity of the battery
is F units. We denote by hij the amount of charge consumed from node i to
node j, if they are adjacent. We assume that the braking energy recuperation is
negligible and thus, the amount of charge consumption of the EV to pass a road
segment is non-negative (i.e., hij ≥ 0). To have a feasible solution, we assume
that for adjacent nodes i and j, hij is less than the maximum capacity of the
battery, F . Also, we assume that hij =∞ if there is no road segment from node i
to node j. Note that in the paper, we use vi and i alternatively when we refer
to a charging node vi.

Consider a path p that contains two consecutive nodes vi and vj . The charge
level of the EV’s battery at node j is denoted by qj , and is recursively defined
based upon: qi, the charge level of the battery in the previously visited node i;
hij , the amount of charge consumption to reach node j from node i; and rj , the
amount of recharging at node j, as follows,

qj = rj + qi − hij . (1)

The EV must have enough charge to travel from node i to node j,

hij ≤ qi. (2)

The charge level of the EV at a node i cannot exceed the maximum capacity F ,

qi ≤ F. (3)

The waiting time to access node i is denoted by ωi. The total waiting time for
recharging cannot exceed a given value W ,∑

i∈p,ri>0

ωi ≤W. (4)

The charging nodes are heterogeneous in terms of their charging price. At
node i, the EV is charged at a fixed price per unit of charge, µi. The objective is
to find a path p over all possible paths P from node 1 to node n, and a recharging
policy r over all feasible recharging polices on path p, Rp, such that the total
recharging cost is minimized,

min
p∈P,r∈Rp

∑
i∈p

µi · ri. (5)
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Fig. 1: An illustrative example: a road network with four charging nodes, where the
start node is v1 and the destination node is v4. The weight on each edge indicates the
amount of charge consumption, while the pair on the vertices indicates the waiting
time and the price per unit of charge, respectively.

Note that in the objective function, we include the cost of recharging at the
source node and the destination. In fact, since the EV is full at node v1 at the
beginning of the trip, without loss of optimality, we can assume that µ1 = 0.
Therefore, the cost of recharging at this node is zero and the EV is fully charged
at this node. Similarly, we do not need to recharge the EV at the destination
node, we can assume that µn = 0. Therefore, the cost of recharging at this node
is zero and will not affect the value of the objective function. It is straightforward
to extend the results in this paper to settings where the EV starts with a non-full
charge.

EVRRP can be represented as a directed graph G(V,E), where V is the set
of vertices representing charging nodes and E is the set of edges representing
the road segments between the nodes. Figure 1 shows an example of such a road
network. In this example, there are four charging nodes. The vehicle must travel
from the start node v1 to the destination node v4. The weight on each edge
shows the amount of charge consumption required to travel the corresponding
road. The pair on the vertices shows the waiting time and the price per unit of
charge, respectively.

2.1 Complexity of EVRRP

In this section, we prove that EVRRP is NP-hard by showing that: (i) the decision
version (EVRRP-D) of EVRRP belongs to NP, and, (ii) a well known NP-complete
problem is reduced to EVRRP-D in polynomial time.

For the first condition, we can easily show that EVRRP-D is in NP. We only
need to guess a solution and a value C, compute the total value of the objective
function (Equation (5)), and verify if the solution is feasible and the associated
objective value is at most C. Obviously, this can be done in polynomial time.
For the second condition, we show that the Shortest Weight-Constrained Path
problem (SWCP), a well-known NP-complete problem (problem ND 30 in [4]),
is reduced to EVRRP-D in polynomial time.

An instance of EVRRP-D is represented by a graph G(V,E), where V =
{v1, . . . , vn} is the set of vertices representing charging nodes, and E is the set
of edges representing the road segments between the nodes. Each node is char-
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Fig. 3: Transforming graph G′, an arbitrary instance of SWCP, to graph G, an instance
of EVRRP-D.

acterized by the charging price per unit of charge, µi, and the waiting time, ωi.
The weight of each edge (i, j) is the amount of charge consumed when traveling
road segment (i, j) (i.e., hij). The decision question is whether there is a path
in G from the source node v1 to the destination node vn with a feasible recharg-
ing policy over the path so that the total cost of recharging (Equation (5)) does
not exceed C and the total waiting time for recharging does not exceed W .

An instance of SWCP consists of a graph G′(V ′, E′), where V ′ = {v′1, . . . , v′m}
is the set of vertices and E′ is the set of edges with cost c′ij and weight w′ij for
each (i, j) ∈ E′. The decision question is whether there is a path in G′ from v′1
to v′m such that the total cost does not exceed C ′, while the total weight is not
greater than W ′.

Theorem 1. EVRRP-D is NP-complete.

Proof. We show that an arbitrary instance of SWCP is transformed into an
instance of EVRRP-D. Let F = 2, C = 2C ′, W = W ′, and n = m. First, we
build graph G with the same set of vertices as graph G′ (i.e., V = V ′), where
v1 = v′1 and vn = v′m. We call these nodes the primary nodes of G. Then, we
add some other nodes to the graph as the secondary nodes.

For every edge (i, j) in G′, we add a secondary node in G. We denote this
node by vij . Then, we add one edge from node vi to node vij , another edge from
node vij to node vj . We set the amount of charge consumption of these edges to
one. Therefore, the amount of charge consumption on path {vi, vij , vj} is two.

We assume that the waiting time at the secondary node vij is w′ij , while at
each primary node it is M >> W , a very large value. Furthermore, the charging
price per unit of charge of the secondary node vij is c′ij . The charging price
rate at each primary node is M >> C, a very large value. Therefore, it is more
preferred to recharge the EV at the secondary nodes.

Figure 3 shows how the graph G is built based on graph G′. Figure 2a shows
graph G′ that has three nodes v1, v2, and v3. The label on each edge represents
the weight and the cost of that edge, respectively. Figure 2b shows graph G with
three primary nodes v1, v2, and v3. We add one secondary node between nodes v1
and v2, and one secondary node between nodes v2 and v3. The secondary nodes
are represented by black filled circles.

Now, we show that the solution for EVRRP-D can be constructed based on
the solution for SWCP. Let us assume that U ′ is the routing path obtained for
SWCP in G′. To obtain the corresponding path U in G, we choose the same path
for the primary nodes. The path from a primary node vi to the next primary
node vj is {vi, vij , vj}.
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The EV starts the route from node v1 with an initial charge level F . Since
the recharging price rate at primary nodes is relatively high, the EV recharges
only at the secondary nodes. Furthermore, the amount of charge consumption
between every two adjacent nodes on the path (primary/secondary) is F

2 . Thus,
an optimal recharging policy of the EV is to stop at the first secondary node
after v1 and recharge the EV to level F . The amount of recharging at this node
is F

2 . For the remaining path, the policy is to pass the next primary (without
recharging) and stop at the next secondary node and recharge the battery fully.
For the last secondary node, the node immediately before the destination node,
we recharge the EV to level F

2 , which is enough to reach the destination node.

Thus, the amount of recharging at this node is F
2 . The total waiting time of the

path is equivalent to the total waiting time of the secondary nodes on the path,∑
vij∈U w

′
ij = W ′. Since W = W ′, Constraint (4) is satisfied.

The price per unit of charge at each secondary node vij is c′ij . Since we
recharge the EV for at most two units, the total cost of recharging to reach
the destination is at most

∑
vij∈U 2 · c′ij = 2C ′. Thus, we obtain a solution for

EVRRP with objective value less than 2C ′. Since C = 2C ′, the total recharging
cost for EVRRP does not exceed C.

Conversely, suppose that U is the routing path in G obtained for EVRRP.
To obtain path U ′ in G′, we choose the sequence of primary nodes of path U .
Since the total waiting time of path U does not exceed W , the total weight of
the corresponding edges in G′ does not exceed W , too. Since W ′ = W , the total
weight on path U ′ does not exceed W ′.

Furthermore, in path U , the amount of recharging at the first secondary node
and the last secondary node is F

2 . The amount of recharging at other secondary
nodes is F = 2. Thus, the cost of recharging at the first secondary node and the
last secondary node is equivalent to the cost of the corresponding edge in G′.
The cost of recharging at any other secondary node, is two times greater than
the cost of the corresponding edge in G. Since the total cost of recharging in G
does not exceed C, the total cost of the corresponding edges in graph G′ does not
exceed C

2 . Since C = 2C ′, the total cost of edges of path U ′ does not exceed C ′.

3 Optimal Solution for EVRRP

Here, we present an algorithm that obtains the optimal solution for EVRRP in
pseudo-polynomial time. We transform the original directed graph G(V,E) into
a directed graph G̃(Ṽ , Ẽ). In the transformed graph, we consider all possible
sequences of stops for recharging. We denote by H(i, j), the minimum amount
of charge consumed from stop i to stop j. The value of H(i, j) is obtained based
on the shortest path (in terms of the amount of charge consumption) from node i
to node j in G. We show that finding the optimal routing and recharging in G
is equivalent to finding the shortest weighted constrained path in G̃. Then, we
provide an algorithm to solve the problem.

In the following, we describe the Transform-Graph procedure which obtains
the transformed graph G̃(Ṽ , Ẽ) from the original graph G. This procedure is
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based on the recharging rules described in the following lemmas which are ex-
tensions of the gas filling policy for the gas station problem [7].

Lemma 1. Let node i and node j be two consecutive stops (for recharging) in
the optimal solution. The path from node i to node j is the shortest path with the
minimum amount of charge consumed from node i to node j in G. The following
rules provide the optimal recharging policy at node i,

(i) if µi < µj, then recharge the battery fully.
(ii) if µi ≥ µj, then recharge the battery just enough to reach node j.

Proof. We can prove this by contradiction. If in the optimal solution, the path
from node i to node j is not the shortest path, we can replace this path with
the shortest path. Since the shortest path has the minimum amount of charge
consumed from node i to node j, the level of the battery upon arriving to node j
is higher than that in the optimal solution. Thus, the amount of recharging
needed at node j is less than that in the optimal solution. This means that
we improve the cost of recharging which is a contradiction with the optimality
assumption.

Furthermore, if µi < µj and the optimal solution does not recharge the
battery fully at node i, then we can improve the cost of recharging by increasing
the amount of recharging at node i and decreasing the amount of recharging at
node j, which is a contradiction with the optimality assumption. Similarly, in the
second case, if the optimal solution recharges the battery more than the charge
amount needed to reach node j, then, we can improve the cost of recharging
by decreasing the amount of recharging at node i and increasing the amount of
recharging at node j.

Lemma 2. Let nodes i, j, and k be three consecutive stops (for recharging) in
the optimal solution. If µi < µj and µj ≥ µk, then H(i, j) +H(j, k) > F .

Proof. According to Lemma 1, the level of the battery when the EV leaves node i
is F . By contradiction, if we assume that H(i, j)+H(j, k) ≤ F , then, the EV can
reach node k without stopping at node j. In other words, the EV can improve
the cost of recharging by decreasing the amount of recharging at node j (to level
zero) and increasing the amount of recharging at node k. This is a contradiction
with the optimality assumption.

Transform-Graph procedure. In this procedure, we transform the original
graph G(V,E) into a new graph G̃(Ṽ , Ẽ). In the transformed graph G̃, each
vertex represents two possible consecutive stops of the EV, and each edge repre-
sents three consecutive recharging stops. For every node i and node j in G, we
add a node < i, j > in G̃, if node j is reachable from node i (i.e., H(i, j) ≤ F ).

We also add a dummy source node < 0, 1 > and a dummy destination node
< n, n+ 1 > to G̃. Since the EV is full at node v1 at the beginning of the trip,
it will not go back to this node during the trip. Therefore, we do not need to
add any node < i, 1 > (where i > 1) to G̃. Similarly, since the goal is to reach
node vn, the EV will not go back from this node to any other node. Therefore,
we do not add any node < n, i > to G̃.
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For every pair of nodes < i, j > and < j, k >, we add an edge from node
< i, j > to node < j, k > based on a set of conditions. Each edge has a la-
bel (wijk, cijk), where wijk is the waiting time for recharging at node j, and cijk
is the cost of recharging at node j.

We add an edge with label (0, 0) from node < 0, 1 > to every adjacent
node < 1, j >. In fact, since the cost of recharging at node v1 is zero (i.e.,
µ1 = 0), the battery will be fully charged at node v1 with cost and waiting time
equal to zero. We also add an edge from every node < i, n > to the destination
node < n, n+ 1 > with label (0, 0).

For every node< i, j > and node< j, k >, where i > 0 and k ≤ n, we consider
all possible cases for the values of µi, µj , and µk. Based on these values, we add
an edge from node < i, j > to node < j, k >, as follows:

Case I (µi < µj < µk): By Lemma 1, we should fully fill the battery at node i
when node j is the next stop. Therefore, the level of the battery when arriving
at node j is F −H(i, j). Given that, µj < µk, we should again fill up the battery
fully at node j. Thus, the cost of edge (< i, j >,< j, k >) is cijk = µj ·H(i, j),
and the waiting time of this edge is wijk = ωj .

Case II (µi < µj and µj ≥ µk): According to Lemma 2, node k is the next
stop after node j only if H(i, j) +H(j, k) > F . Therefore, we add an edge from
node < i, j > to node < j, k > if H(i, j) +H(j, k) > F . By Lemma 1, the level
of the battery upon arriving at node j from node i should be F −H(i, j). Given
that µj ≥ µk, the battery should only be filled up just enough to reach node k
from node j. Thus, the cost of the edge is cijk = µj · (H(j, k) +H(i, j)−F ), and
the waiting time is wijk = ωj .

Case III (µi ≥ µj and µj < µk): In this case, we have an empty battery
when reaching node j from node i. Also, we want to recharge the battery fully
at node j since µj < µk. Thus, we add an edge with cost cijk = µj · F , and
waiting time wijk = ωj .

Case IV (µi ≥ µj and µj ≥ µk): In this case, we have an empty battery when
reaching node j; however, we only want to recharge enough to reach node k. Thus,
the cost of the edge is cijk = µj ·H(j, k), and the waiting time is wijk = ωj .

Theorem 2. The optimal solution for EVRRP in graph G is equivalent to the
optimal solution for EVRRP in graph G̃.

Proof. We need to show that: (i) for any feasible sequence of recharging stops
in G, the corresponding sequence in G̃ is a feasible sequence and the amount
of recharging at each node is the same as in G; (ii) for any feasible sequence of
recharging stops in G̃, the corresponding sequence in G is a feasible sequence
and the EV has the same recharging policy as in G̃.

Let p = {p1, . . . , ps} be the sequence of stops of a feasible path in G, where s
is the number of nodes in the sequence. We need to show that (1) p is a feasible
sequence of stops in G̃; and (2) the level of the battery when the EV arrives at
node pi in both graphs is the same. We prove this by induction.

According to our assumption, the EV reaches node v1 with an empty battery.
Then, it will be recharged to level F with zero cost/waiting time (µ1 = ω1 = 0).
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Thus, node p1 = v1 is the first stop for recharging. In both G and G̃, node v1 is
reachable and the level of the battery when the EV reaches this node is zero.

Let us assume that {p1, . . . , pi} is a feasible sequence of stops in both graphs;
and for every node j ≤ i, the level of the battery is the same in both graphs. Now,
we need to show that node < pi, pi+1 > in G̃ is reachable from < pi−1, pi > via
edge (< pi−1, pi, < pi, pi+1 >) and the level of the battery when the EV arrives
at node pi+1 is the same in both graphs.

Since pi+1 is the next stop in the sequence p in G, H(pi, pi+1) ≤ F . Thus,
according to transformation rules, there is an edge from node < pi−1, pi > to
node < pi, pi+1 > in G̃. This implies that node < pi, pi+1 > is reachable from
node < pi−1, pi >. For the second condition, we consider the possible values of µi
and µi+1,

Case 1 (µi < µi+1): According to Lemma 1, the level of the battery when
the EV leaves node pi in G is F . Thus, upon arriving at node pi+1, the level of
the battery is F −H(pi, pi+1). On the other hand, according to transformation
rules (I) and (III), the level of the battery corresponding to edge (< pi−1, pi >,
< pi, pi+1 >) is F . Thus, the level of the battery upon arriving at node pi+1 in
both graphs is the same and equal to F −H(pi, pi+1).

Case 2 (µi ≥ µi+1): According to Lemma 1, the level of the battery when
the EV leaves node pi in G is H(pi, pi+1). Thus, upon arriving at node pi+1,
the level of the battery is zero. On the other hand, according to transformation
rules (II) and (IV), the level of the battery corresponding to edge (< pi−1, pi >,
< pi, pi+1 >) is H(pi, pi+1). Thus, the level of battery upon arriving at node pi+1

in both graphs is the same and equal to zero.
Similarly, we can show that a feasible sequence of recharging in G̃ is a feasible

sequence of stops in G and the level of the battery upon arriving at each node of
the sequence in both graphs is the same.

Now, the problem is to find a path from the source node < 0, 1 > to the destina-
tion node < n, n+1 > in the transformed graph G̃ such that the total cost of the
path is minimized, while the total waiting time does not exceed W . Therefore,
EVRRP can be viewed as an SWCP problem. In order to obtain the optimal solu-
tion, we use a dynamic programming algorithm [2], called DP-SWCP, introduced
for the SWCP problem.

The general idea of DP-SWCP is to use a set of labels for each node of
the graph. Each label (Wijl, Cijl) corresponds to a path l from the source node
< 0, 1 > to node < i, j > and is composed of two elements: Wijl, the total waiting
time of the path when the EV leaves node j, and Cijl, the total cost of that
path. DP-SWCP finds all non-dominated labels on every node. The dominance
relation is defined based on the total waiting time and the total cost on each
label. For a given node < i, j >, let us assume we find two labels (Wijl, Cijl)
and (Wijl′ , Cijl′) such that Wijl ≤Wijl′ , and Cijl < Cijl′ . Then, path l′ cannot
be a part of the optimal solution, because we could replace it with path l which
has a lower cost and a lower weight. Therefore, we can disregard this path. In
this case, we say that label (Wijl, Cijl) dominates label (Wijl′ , Cijl′) and denote
it by (Wijl, Cijl) . (Wijl′ , Cijl′).
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Algorithm 1 OPT-EVRRP Algorithm

Input: G(V,E): Graph representing the road network
W : Maximum allowable waiting time

Output: p = {pi}: Routing vector
r = {ri}: Recharging vector
cost: Total cost

1: G̃← Transform-Graph(G)
2: p← DP-SWCP(G̃,W )
3: q1 ← F
4: i← 1
5: for each u = 2, . . . , |p| − 1 do
6: j ← pu
7: k ← pu+1

8: if µj ≤ µk then
9: qj ← F

10: else
11: qj ← H(j, k)

12: rj ← qj − qi +H(i, j)

13: cost←
∑
i∈p ri · µi

DP-SWCP starts with the source node < 0, 1 > and assigns a label (0, 0). The
algorithm extends the set of labels by treating a label with the minimum cost. In
the treatment of a label l, the algorithm extends the path corresponding to the
label l along all outgoing edges. In fact, the treatment of a label (Wijl, Cijl) on
node < i, j > considers each adjacent node < j, k > such that Wijl +wijk ≤W :
if (Wijl +wijk, Cijl + cijk) is not dominated by any label on node < j, k >, adds
it to the set of labels on node < j, k >. DP-SWCP continues the procedure until
all non-dominated labels are treated. Finally, it picks the path that corresponds
to the label with minimum cost at the destination node < n, n + 1 > as the
optimal solution.

The algorithm for solving EVRRP, called OPT-EVRRP, is given in Algo-
rithm 1. The input of the algorithm is the graph G(V,E), while the output
is the sequence of stops p = {pi}, the recharging vector r = {ri}, and the total
cost of recharging. The algorithm calls the Transform-Graph procedure to obtain
the transformed graph G̃ (Line 1). Then, it calls DP-SWCP to obtain the optimal
sequence of recharging p in G̃ (Line 2). Based on Lemma 1, the OPT-EVRRP
obtains the optimal amount of recharging at each stop (Lines 3-13). In Section 4,
we provide an example on how OPT-EVRRP works on the EVRRP instance given
in Figure 1.

Theorem 3. OPT-EVRRP obtains the optimal solution for EVRRP and its time
complexity is O(n3 + n2 ·W ).

Proof. According to Theorem 2, the optimal solution for EVRRP in graph G
is equivalent to the optimal solution in graph G̃. Since DP-SWCP obtains the
optimal solution in G̃, this solution is also optimal for EVRRP in G.



An Efficient Algorithm for Routing and Recharging of Electric Vehicles 11

To determine the time complexity of OPT-EVRRP, we need to determine
the time complexity of Transform-Graph and DP-SWCP procedures. The time
complexity of Transform-Graph is proportional to the number of edges in G̃ and
is O(n3). The time complexity of DP-SWCP depends on the number of treated
labels in G̃. DP-SWCP does not treat two labels with the same total waiting
time (because one of them has a cost not less than the other one, and therefore,
it dominates it). The maximum waiting time of a label is bounded by W (W is
integer). Thus, there are at most W + 1 labels on node < i, j >. On the other
hand, there are at most n2 nodes in G̃. Thus, the total number of treated labels
is O(n2 ·W ). Thus, the time complexity of OPT-EVRRP is O(n3 + n2 ·W ).

4 An Illustrative Example

We provide a numerical example to illustrate how OPT-EVRRP works. In this
example, we consider the road network given in Figure 1 as the original graph G.
The maximum capacity of the battery is F = 4, and the maximum allowable
waiting time is W = 8. We can easily see that the optimal solution for this
example is to start the trip from node v1, visit node v2 without recharging, stop
at node v3 and recharge for 4 units, visit node v2 again and recharge for one
unit, and finally, visit node v4. The total cost of this recharging policy is 12,
while the total waiting time is 4.

Now, we show how OPT-EVRRP obtains the optimal solution for this ex-
ample. To transform graph G into G̃, we determine the value of H(i, j), the
minimum amount of charge consumed from node i to node j in G. Table 1
shows the value of H(i, j) for every node i and node j in G.

Figure 4 shows the transformed graph G̃. The source node is node < 0, 1 >
and the destination node is < 4, 5 >. For every nodes i and j in G, we add a
node < i, j > to G̃, if node j is reachable from node i (i.e., H(i, j) ≤ F ). For
example, we add node < 1, 2 > to G̃ because H(1, 2) = 3; but we do not add
node < 3, 4 > to G̃ because H(3, 4) > F .

For every pair of nodes < i, j >, and < j, k >, we add an edge from node
< i, j > to node < j, k > based on the transformation rules in Transform-Graph
procedure. In Figure 4, the pair on the edge (< i, j >,< j, k >) shows the
waiting time and the recharging cost of the edge.

We add an edge from node < 0, 1 > to adjacent node < 1, 2 > with label
(0, 0). Similarly, we add an edge from node < 0, 1 > to node < 1, 3 > with
label (0, 0). For nodes < 1, 2 > and < 2, 4 >, since µ1 < µ2, and µ2 > µ4, we

i/j 1 2 3 4

1 0 3 4 7
2 4 0 1 4
3 5 1 0 5
4 7 3 4 0

Table 1: Example: The values of H(i, j)

< 0, 1 >

< 1, 2 >

< 1, 3 > < 3, 2 >

< 2, 4 >

< 2, 3 >

< 4, 5 >

(0,0) (3,24)

(1,4)

(3,8)

(1,4)

(0,0)

(0,0)

Fig. 4: Example: The transformed
graph G̃.
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follow the transformation rule (II). In this case, since H(1, 2) + H(2, 4) > F ,
we add an edge from node < 1, 2 > to node < 2, 4 >. The cost of this edge is
µ2 · (H(1, 2) + H(2, 4) − F ) = 24 and the waiting time is ω2 = 3. Similarly, for
nodes < 1, 2 > and < 2, 3 >, we follow the transformation rule (II). However,
since H(1, 2) +H(2, 3) = 4 which is not greater than F , we do not add any edge
from node < 1, 2 > to node < 2, 3 >.

For nodes < 1, 3 > and < 3, 2 >, we follow the transformation rule (I). We
add an edge from node< 1, 3 > to node< 3, 2 > with cost µ3·H(1, 3) = 4 and the
waiting time ω3 = 1. We follow the transformation rule (II) to add an edge from
node < 3, 2 > to node < 2, 4 >. The cost of this edge is µ2 · (H(3, 2) +H(2, 4)−
F ) = 8 and the waiting time is ω2 = 3. We also follow the transformation rule
(III) and add an edge from node < 2, 3 > to node < 3, 2 >. The cost of this edge
is µ3 · F = 4 and the waiting time is ω3 = 1. For nodes < 3, 2 > and < 2, 3 >,
we follow the transformation rule (II). Since H(3, 2) + H(2, 3) = 2 and is not
greater than F , we do not add an edge from node < 3, 2 > to node < 2, 3 >.
Finally, we add an edge from node < 2, 4 > to destination node < 4, 5 > with
label (0, 0).

Now, we use DP-SWCP to obtain the optimal solution in G̃. Due to the
limited space, we do not illustrate the procedure of DP-SWCP. There are two
possible paths from source node < 0, 1 > to the destination node < 4, 5 >. DP-
SWCP determines path {< 0, 1 >, < 1, 3 >, < 3, 2 >,< 2, 4 >,< 4, 5 >} as the
optimal path in G̃. Thus, the optimal sequence of stops is v1, v3, v2, v4, the total
waiting time is 4, and the total cost of recharging is 12, which corresponds to
the optimal solution in the original graph G.

5 An Efficient Algorithm for EVRRP

In the previous section, we showed that OPT-EVRRP provides the optimal so-
lution for EVRRP and is pseudo-polynomial (in terms of the maximum total
waiting time). Here, we provide an efficient algorithm for EVRRP, called APX-
EVRRP, by scaling down the waiting time of each edge in the transformed graph
as well as the maximum waiting time. For this purpose, we scale down the values
of wijk to ω̄j = dn·ωj

ε·W e, where 0 < ε < 1. The maximum waiting time is also
scaled down to W̄ = n

ε .

APX-EVRRP is given in Algorithm 2. The algorithm calls the Transform-Graph
procedure to obtain the transformed graph G̃ (Line 1). Then, it scales down the
waiting time of each edge of the transformed graph (Lines 2-3), and calls DP-
SWCP to solve the rounded problem with maximum allowable waiting time n

ε
(Line 4). Finally, given the the optimal solution p for the rounded problem,
where p is the sequence of stops, it determines the recharging amount at each
stop (Lines 5-15). We choose the sequence p with recharging policy r as the
solution for EVRRP. In the next section, we show that this solution is feasible
and the total cost obtained by this solution is bounded by the optimal cost for
EVRRP with maximum waiting time (1− ε) ·W .
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Algorithm 2 APX-EVRRP Algorithm

Input: G(V,E): Graph representing the road network
W : Maximum allowable waiting time

Output: p = {pi}: Routing vector
r = {ri}: Recharging vector
cost: Total cost

1: G̃← Transform-Graph(G)
2: for each (< i, j >< j, k >) ∈ Ẽ do
3: wijk ← d

n·wijk

ε·W e
4: p← DP-SWCP(G̃, n

ε
)

5: q1 ← F
6: i← 1
7: for each u = 2, . . . , |p| − 1 do
8: j ← pu
9: k ← pu+1

10: if µj ≤ µk then
11: qj ← F
12: else
13: qj ← H(j, k)

14: rj ← qj − qi +H(i, j)

15: cost←
∑
i∈p ri · µi

5.1 Properties of APX-EVRRP

In this section, we analyze the properties of the proposed algorithm. First, we
prove the correctness of APX-EVRRP by showing that the algorithm obtains a
feasible solution for EVRRP in polynomial time. Then, we show that the total
recharging cost of the solution is not greater than the optimal cost for EVRRP
with the maximum allowable waiting time (1− ε) ·W .

Let us denote the solution obtained by APX-EVRRP by (p, r), where p is the
sequence of stops and r gives the recharging amount at each stop. We also denote
by EVRRP(1−ε), the EVRRP problem with the maximum allowable waiting time
(1− ε) ·W , and by (p∗, r∗), the optimal solution for EVRRP(1−ε).
Theorem 4. APX-EVRRP obtains a feasible solution for EVRRP and its time

complexity is O(n
3

ε ).

Proof. Since the amount of charge consumption between every pair of nodes
in the rounded problem is the same as in the original problem, the recharging
policy r is feasible for the original problem (to reach the destination). Thus, we
only need to show that the total waiting time of the solution does not exceed W .
In the rounded solution, the total rounded waiting time is not greater than n

ε
(i.e.,

∑
i∈p ω̄i ≤

n
ε ). On the other hand ω̄i = dn·ωi

ε·W e. Thus,∑
i∈p

n · ωi
ε ·W

≤
∑
i∈p

ω̄i ≤
n

ε
.
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Thus, ∑
i∈p

ωi ≤W.

Therefore, (p, r) is a feasible solution for EVRRP with the total waiting time less
than or equal W .

The time complexity of APX-EVRRP comes mainly from DP-SWCP. In the
rounded problem, the possible value of the maximum waiting time is reduced
to n

ε . Therefore, the time complexity of DP-SWCP for the rounded problem is

O(n
3

ε ). Thus, the time complexity of APX-EVRRP is O(n
3

ε ).

Now, we show that the total cost obtained by APX-EVRRP is not greater
than the optimal cost for EVRRP(1−ε). For this purpose, we show that (p∗, r∗)
is a feasible solution for the rounded problem and the recharging cost of this
solution is not less than the cost obtained from solution (p, r).

Lemma 3. The optimal solution (p∗, r∗) for EVRRP(1−ε) is a feasible solution
for the rounded problem.

Proof. Since the amount of charge consumption between every pair of nodes is
the same in both the rounded problem and the original problem, the recharging
policy r∗ is feasible for the rounded problem. Thus, we only need to show that
the total rounded waiting time obtained from solution (p∗, r∗) is not greater
than n

ε . The rounded waiting time at stop i is ω̄i = dn·ωi

ε·W e. Thus,∑
i∈p∗

ω̄i ≤
∑
i∈p∗

(
n · ωi
ε ·W

+ 1).

On the other hand, the total waiting time of < p∗, r∗ > is not greater that
(1− ε) ·W (i.e.,

∑
i∈p∗ ωi ≤ (1− ε) ·W ). Therefore,

∑
i∈p∗

ω̄i ≤
∑
i∈p∗

(
n · ωi
ε ·W

+ 1) ≤ n · (1− ε) ·W
ε ·W

+ n ≤ n · (1 +
1− ε
ε

) ≤ n

ε
.

Therefore, (p∗, r∗) is a feasible solution for the rounded problem.

Theorem 5. The total cost of the solution obtained by APX-EVRRP is not
greater than the optimal cost for EVRRP(1−ε).

Proof. According to Lemma 3, the optimal solution for EVRRP(1−ε) is a feasible
solution for the rounded problem. On the other hand, OPT-EVRRP obtains the
optimal solution < p, r > for the rounded problem. Therefore,∑

i∈p
ri · µi ≤

∑
i∈p∗

r∗i · µi.

Therefore, the total cost of the solution obtained by APX-EVRRP is not greater
than the total cost of the optimal solution for EVRRP(1−ε).
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6 Conclusion

We studied the routing and recharging optimization problem for electric vehicles,
where the aim is to find the routing path from a starting point to destination
such that the total recharging cost is minimized. We considered that charging
nodes have heterogeneous prices and waiting times. We studied the properties of
the problem and showed that the problem is NP-hard. We proposed a pseudo-
polynomial algorithm for the optimal solution and a polynomial time algorithm
that obtains a solution with the total recharging cost not greater than the opti-
mal cost for the same problem but with the maximum waiting time of (1−ε) ·W ,
where W is the maximum allowable waiting time. As a future research, we plan
on considering the heterogeneity of charging stations in terms of charging speed.
Another direction for future study is to take the uncertainty of waiting times at
charging stations into account.
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