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ABSTRACT
We design a parallel algorithm for the Constrained Shortest Path

(CSP) problem. The CSP problem is known to be NP-hard and there

exists a pseudo-polynomial time sequential algorithm that solves

it. To design the parallel algorithm, we extend the techniques used

in the design of the Δ-stepping algorithm for the single-source

shortest paths problem.

CCS CONCEPTS
• Theory of computation → Shared memory algorithms;
Shortest paths.
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1 INTRODUCTION
Given a directed graph 𝐺 = (𝑉 , 𝐸), with non-negative cost 𝑐𝑖 𝑗 , and
non-negative weight 𝜔𝑖 𝑗 for all edges (𝑖, 𝑗) ∈ 𝐸, the Constrained
Shortest Path (CSP) problem is to find the shortest path (in terms

of cost) from a source node 𝑣1 to a destination node 𝑣𝑛 , such that

the total weight of the path is less than a given positive integer𝑊 .

The CSP is an NP-hard problem, that is, it is not possible to find

an optimal solution in polynomial time, unless 𝑃 = 𝑁𝑃 . Several

algorithms for solving the CSP problem are based on node labeling

techniques [1, 3]. In this paper, we design a parallel (Δ, Γ)-stepping
algorithm for solving the CSP problem. Several parallel Δ-stepping
and radius-stepping algorithms have been developed for the single-

source shortest paths problem [2]. However, none of these algo-

rithms have been extended to solve the CSP problem. To design the

parallel algorithm we extend the bucket-based approach used in the

design of the Δ-stepping algorithm for the single-source shortest

paths problem [4]. To the best of our knowledge, this is the first

parallel algorithm for the CSP problem.

2 SEQUENTIAL (Δ, Γ)-STEPPING ALGORITHM
We extend the idea of Δ-stepping algorithm [4] developed for the

single-source shortest paths problem to design an algorithm forCSP.
We define a 2-dimensional array of buckets in which one dimension

corresponds to the range of cost of labels and the other dimension

corresponds to the range of weight of labels. Each bucket contains a
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set of labels with cost and weight in a range of Δ and Γ, respectively.
That is, 𝐵 [ 𝑗] [𝑘], ∀𝑗 ∈ {1, . . . , ⌈ 𝐿Δ ⌉},∀𝑘 ∈ {1, . . . , ⌈

𝑊
Γ ⌉}, contains a

set of labels {𝑎𝑙
𝑖
= (𝜋𝑙

𝑖
, 𝑐𝑙
𝑖
,𝑤𝑙

𝑖
)}, where 𝜋𝑙

𝑖
is the corresponding path

from source node 𝑣1 to node 𝑣𝑖 and 𝑐
𝑙
𝑖
and𝑤𝑙

𝑖
are the cost and the

weight of that path which are within intervals [( 𝑗 − 1) · Δ, 𝑗 · Δ)
and [(𝑘 − 1) · Γ, 𝑘 · Γ), respectively,

𝐵 [ 𝑗] [𝑘] = {(𝜋𝑙𝑖 , 𝑐
𝑙
𝑖 ,𝑤

𝑙
𝑖 ) | (( 𝑗−1)·Δ ≤ 𝑐𝑙𝑖 < 𝑗 ·Δ , (𝑘−1)·Γ ≤ 𝑤𝑙

𝑖 < 𝑘 ·Γ}

Here, 𝐿 is an upper bound for the cost of the optimal path which is

obtained by finding a feasible solution for the CSP problem.

Algorithm 1 shows the proposed sequential (Δ, Γ)-stepping algo-
rithm. The aim of the algorithm is to find all non-dominated labels

on every node. Then, among all the non-dominated labels on the

destination node, it picks the one that has the minimum cost. The

dominance relation is defined based on the weight and the cost on

each label. For a given node 𝑖 , let us assume the algorithm finds two

labels (𝜋𝑙
𝑖
, 𝑐𝑙
𝑖
,𝑤𝑙

𝑖
) and (𝜋𝑙 ′

𝑖
, 𝑐𝑙
′
𝑖
,𝑤𝑙 ′

𝑖
) such that𝑤𝑙

𝑖
≤ 𝑤𝑙 ′

𝑖
, and 𝑐𝑙

𝑖
< 𝑐𝑙

′
𝑖
.

Then, path 𝜋𝑙
′
𝑖
cannot be a part of the optimal solution, because we

could replace it with path 𝜋𝑙
𝑖
which has a lower cost and a lower or

equal weight. Therefore, we can disregard this path. In this case, we

say that label (𝜋𝑙
𝑖
, 𝑐𝑙
𝑖
,𝑤𝑙

𝑖
) dominates label (𝜋𝑙 ′

𝑖
, 𝑐𝑙
′
𝑖
,𝑤𝑙 ′

𝑖
) and denote

it by (𝜋𝑙
𝑖
, 𝑐𝑙
𝑖
,𝑤𝑙

𝑖
) ▷ (𝜋𝑙 ′

𝑖
𝑐𝑙
′
𝑖
,𝑤𝑙 ′

𝑖
).

In Algorithm 1, buckets of labels are treated in increasing lex-

icographic order of their indices. Here the lexicographic order is

defined as ( 𝑗, 𝑘) <lex ( 𝑗 ′, 𝑘 ′) iff 𝑗 < 𝑗 ′ or ( 𝑗 = 𝑗 ′ and 𝑘 ≤ 𝑘 ′),
where ( 𝑗, 𝑘) and ( 𝑗 ′, 𝑘 ′) are the indices of two buckets. The labels

in each bucket are treated as in the case of the label correcting

approach. Let 𝐴𝑖 be the set of labels on node 𝑖 . The algorithm sets

all 𝐴𝑖 except 𝐴1 to the empty set. Set 𝐴1 is the set of labels of the

source node 𝑣1 and is initially set to {(𝑣1, 0, 0)}. It also initializes

all the buckets with the empty set (except 𝐵 [1] [1]) (Lines 1-4). In
each iteration of the outer loop (Lines 5-15) the labels of the first

non-empty bucket that has the lexicographically smallest indices,

are treated. Once all buckets have been treated, the algorithm stops

and the solution is stored in (𝑝, 𝑐𝑜𝑠𝑡,𝑤𝑒𝑖𝑔ℎ𝑡), where 𝑝 is the optimal

path and 𝑐𝑜𝑠𝑡 and𝑤𝑒𝑖𝑔ℎ𝑡 are its corresponding cost and weight.

We group the edges of the graph into the set of light edges 𝐸𝑙𝑖𝑔ℎ𝑡
and the set of heavy edges 𝐸ℎ𝑒𝑎𝑣𝑦 . The light edges are the edges

with cost and weight less than Δ and Γ, respectively. The edges
that are not light are heavy edges. In each phase, i.e., each iteration

of the inner while loop, the algorithm removes all labels 𝑎𝑙
𝑖
from

the current bucket 𝐵 [ 𝑗] [𝑘] and relaxes all light edges (𝑖, 𝑖 ′) out
of node 𝑖 (Lines 12-13). The current bucket contains labels with

the cost and the weight within intervals [( 𝑗 − 1) · Δ, 𝑗 · Δ) and
[(𝑘 − 1) · Γ, 𝑘 · Γ), respectively. Thus, by relaxing the light edges,

some new labels with the cost and the weight within intervals

[( 𝑗 − 1) ·Δ, ( 𝑗 + 1) ·Δ) and [(𝑘 − 1) · Γ, (𝑘 + 1) · Γ), respectively, may

be added to their corresponding buckets (i.e., 𝐵 [ 𝑗] [𝑘], 𝐵 [ 𝑗] [𝑘 + 1],

https://doi.org/10.1145/3490148.3538555
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Algorithm 1 Sequential (Δ, Γ)-stepping Algorithm
Input: 𝐺 (𝑉 , 𝐸) ,𝑊 , 𝐿, Δ,Γ
Output: 𝑝 , 𝑐𝑜𝑠𝑡 , 𝑤𝑒𝑖𝑔ℎ𝑡

1: 𝐴𝑖 ← ∅ ∀𝑖 ∈ 𝑉
2: 𝐴1 ← {(𝑣1, 0, 0) }
3: 𝐵 [ 𝑗 ] [𝑘 ] ← ∅ ∀𝑗 ∈ {1, . . . , ⌈𝐿Δ ⌉ }, ∀𝑘 ∈ {1, . . . , ⌈

𝑊
Γ ⌉ }

4: 𝐵 [1] [1] ← {(𝑣1, 0, 0) }
5: while ∼isEmpty(𝐵) do
6: ( 𝑗, 𝑘) ← min

lex {( 𝑗, 𝑘) |𝐵 [ 𝑗 ] [𝑘 ] ≠ ∅}
7: 𝑅 ← ∅
8: while 𝐵 [ 𝑗 ] [𝑘 ] ≠ ∅ do
9: 𝑅 ← 𝑅 ∪ 𝐵 [ 𝑗 ] [𝑘 ]
10: 𝑡𝑚𝑝 ← 𝐵 [ 𝑗 ] [𝑘 ]
11: 𝐵 [ 𝑗 ] [𝑘 ] ← ∅
12: for each 𝑎𝑙

𝑖
∈ 𝑡𝑚𝑝 and (𝑖, 𝑖′) ∈ 𝐸𝑙𝑖𝑔ℎ𝑡 do

13: Relax(𝑎𝑙
𝑖
, 𝑖′))

14: for each 𝑎𝑙
𝑖
∈ 𝑅 and (𝑖, 𝑖′) ∈ 𝐸ℎ𝑒𝑎𝑣𝑦 do

15: Relax((𝑎𝑙
𝑖
, 𝑖′))

16: if isEmpty (𝐴𝑛 ) then
17: (𝑝, 𝑐𝑜𝑠𝑡, 𝑤𝑒𝑖𝑔ℎ𝑡 ) ← (∅,∞,∞)
18: else
19: (𝑝, 𝑐𝑜𝑠𝑡, 𝑤𝑒𝑖𝑔ℎ𝑡 ) ← min-cost(𝐴𝑛)

𝐵 [ 𝑗 + 1] [𝑘], or 𝐵 [ 𝑗 + 1] [𝑘 + 1]). The labels that are added to the

current bucket will be deleted in the next phase. Once the current

bucket is finally empty, the algorithm relaxes the heavy edges and

sequentially searches for the next nonempty bucket. Once all labels

have been settled, it checks the destination node. If there is no label

on node 𝑛, it returns an empty path (i.e., the problem has no feasible

solution). Otherwise, it finds the label with the minimum cost on

node 𝑛 and stores the solution to (𝑝, 𝑐𝑜𝑠𝑡,𝑤𝑒𝑖𝑔ℎ𝑡) (Lines 16-19).
The RELAX procedure is given in Algorithm 2. The procedure

gets a relaxation request (𝑎𝑙
𝑖
, 𝑖 ′) as input, where 𝑎𝑙

𝑖
is a label on

node 𝑖 , and 𝑖 ′ is the end node of edge (𝑖, 𝑖 ′) ∈ 𝐸, and generates

a new label (𝜋𝑙
𝑖
|𝑖 ′, 𝑐𝑙

𝑖
+ 𝑐𝑖𝑖′,𝑤𝑙

𝑖
+ 𝜔𝑖𝑖′) by relaxing edge (𝑖, 𝑖 ′). The

algorithm adds the new label to its corresponding bucket and to

the list of labels on node 𝑖 ′ if the weight of the label is less than𝑊 ,

the cost of the label is less than 𝐿, and the label is not dominated by

any label on node 𝑖 ′ (Lines 1-4). Furthermore, if there is a label 𝑎𝑙
′
𝑖′

in 𝐴𝑖′ that is dominated by the new label, the algorithm removes

it from both 𝐴𝑖′ and the corresponding bucket (Lines 5-7). The

algorithm is not processing labels with weight greater than 𝑊 ,

because treating these labels only leads to a source-destination

path with the total weight greater than𝑊 , while the goal of CSP is

to find the shortest path with the total weight not greater than𝑊 .

Similarly, the algorithm does not treat labels with cost greater than

𝐿, because the paths of these labels cannot be a part of the optimal

solution as their cost is greater than the upper bound 𝐿. Next, we

discuss the properties of the sequential (Δ, Γ)-stepping algorithm.

Theorem 2.1. The sequential (Δ, Γ)-stepping algorithm finds the
optimal solution, if there exists a feasible solution for the problem.

Proof. We show that if the labels of a bucket 𝐵 [ 𝑗] [𝑘] are settled,
their values are optimal and cannot be dominated by the labels

obtained by treating upcoming buckets. The proof is based on the

fact that the buckets are processed in increasing lexicographic order.

Since the cost and the weight of the edges are non-negative, the

labels of upcoming buckets cannot dominate the treated labels.

Algorithm 2 RELAX(𝑎𝑙
𝑖
, 𝑖 ′)

1: (𝑐, �̄�, 𝜋 ) ← (𝑐𝑙
𝑖
+ 𝑐𝑖𝑖′ , 𝑤𝑙

𝑖
+𝜔𝑖𝑖′ , 𝜋

𝑙
𝑖
|𝑖′)

2: if �̄� ≤𝑊 and 𝑐 ≤ 𝐿 and (𝜋, 𝑐, �̄�) ̸ ▷𝑎𝑙′
𝑖′ ∀𝑙

′ ∈ 𝐴𝑖′ then
3: 𝐴𝑖′ ← 𝐴𝑖′ ∪ {(𝜋, 𝑐, �̄�) }
4: 𝐵 [ ⌈ 𝑐Δ ⌉ ] [

�̄�
Γ ⌉ ] ← 𝐵 [ ⌈ 𝑐Δ ⌉ ] [ ⌈

�̄�
Γ ⌉ ] ∪ {(𝜋, 𝑐, �̄�) }

5: if ∃𝑎𝑙′
𝑖′ ∈ 𝐴𝑖′ | (𝜋, 𝑐, �̄�) ▷ 𝑎𝑙

′
𝑖′ then

6: 𝐴𝑖′ ← 𝐴𝑖′ \ {𝑎𝑙
′
𝑖′ }

7: 𝐵 [ ⌈
𝑐𝑙
′
𝑖′
Δ ⌉ ] [ ⌈

𝑤𝑙′
𝑖′
Γ ⌉ ] ← 𝐵 [ ⌈

𝑐𝑙
′
𝑖′
Δ ⌉ ] [ ⌈

𝑤𝑙′
𝑖′
Γ ⌉ ] \ {𝑎

𝑙′
𝑖′ }

Suppose label 𝑎𝑙
𝑖
= (𝜋𝑙

𝑖
, 𝑐𝑙
𝑖
,𝑤𝑙

𝑖
) in 𝐵 [ 𝑗] [𝑘] is dominated by treat-

ing label 𝑎𝑙
′
𝑖′ = (𝜋

𝑙 ′
𝑖′ , 𝑐

𝑙 ′
𝑖′ ,𝑤

𝑙 ′
𝑖′ ) in 𝐵 [ 𝑗 ′] [𝑘 ′], where ( 𝑗, 𝑘) <lex ( 𝑗 ′, 𝑘 ′),

through an edge (𝑖 ′, 𝑖). As a result of ( 𝑗, 𝑘) <lex ( 𝑗 ′, 𝑘 ′), there
are two possible cases: case I: 𝑗 < 𝑗 ′; case II: 𝑗 = 𝑗 ′, 𝑘 < 𝑘 ′.
Here, we provide the proof for case I, but a similar proof can

be obtained for case II. If (𝜋𝑙 ′
𝑖′ |𝑖, 𝑐

𝑙 ′
𝑖′ + 𝑐𝑖′𝑖 ,𝑤

𝑙 ′
𝑖′ + 𝜔𝑖′𝑖 ) ▷ 𝑎𝑙

𝑖
, then

𝑐𝑙
′
𝑖′+𝑐𝑖′𝑖 ≤ 𝑐𝑙

𝑖
< Δ· 𝑗 =⇒ 𝑐𝑙

′
𝑖′ < Δ· 𝑗 . On the other hand,Δ·( 𝑗 ′−1) ≤ 𝑐𝑙

′
𝑖′

and since 𝑗 < 𝑗 ′, we have Δ · 𝑗 ≤ 𝑐𝑙
′
𝑖′ , which is a contradiction.

To analyze the time complexity, we define a (Δ, Γ)-path as a path
with cost at most Δ and weight at most Γ without edge repetitions.

We denote the set of pairs of nodes (𝑖, 𝑖 ′) that are connected through
a (Δ, Γ)-path by𝐶ΔΓ and define 𝑛ΔΓ = |𝐶ΔΓ |. Define𝐶+ΔΓ as the set

of triples (𝑖, 𝑖 ′, ℎ) such that (𝑖, 𝑖 ′) ∈ 𝐶ΔΓ and (𝑖 ′, ℎ) is a light edge
and𝑚ΔΓ = |𝐶+ΔΓ |.

Lemma 2.2. The time complexity of the (Δ, Γ)-stepping algorithm
for relaxing the light edges is bounded by 𝑂 (𝑊 2 ·𝑚ΔΓ).

Proof. To determine the number of labels that are added to

a bucket; but are deleted in the next phases, we give a mapping

from the set of deleted labels into𝐶ΔΓ . Consider a label 𝑎
𝑙
𝑖
which is

dominated by a label in phase 𝑡 . There must be a most recent phase

𝑡 ′ ≤ 𝑡 when 𝑎𝑙
𝑖
was generated and was not dominated by any label.

Consider a settled label (obtained in any phase) on node 𝑖 with its

associated path 𝜋 = (𝑣1, . . . , 𝑣𝑖′, ..., 𝑣𝑖 ). Let us assume that 𝑎𝑙
′
𝑖′ is a

label on node 𝑖 ′ that is the first unsettled label on 𝜋 immediately

before phase 𝑡 ′. Hence, 𝑎𝑙
′
𝑖′ is settled in phase 𝑡 ′ (due to the edge

relaxation of settled labels in the previous phase). Since both 𝑎𝑙
𝑖

and 𝑎𝑙
′
𝑖′ are in the same bucket in phase 𝑡 ′ and 𝑎𝑙

′
𝑖′ has been settled,

(𝑣 ′
𝑖
, . . . , 𝑣𝑖 ) is a (Δ, Γ)-path. Since 𝑎𝑙

′
𝑖′ becomes settled, the deletion

of 𝑎𝑙
𝑖
in phase 𝑡 can be uniquely mapped to a label 𝑎𝑙

′
𝑖′ where (𝑖, 𝑖

′) ∈
𝐶ΔΓ . Since there are at most𝑊 labels on each node 𝑖 and 𝑖 ′, the
maximum number of deleted labels is 𝑂 (𝑊 · |𝐶ΔΓ |) = 𝑂 (𝑊 · 𝑛ΔΓ).
On the other hand, the number of relaxations of the dominated

labels is identified based on the number of light edges coming out

of dominated labels which is𝑂 (𝑊 ·𝑚ΔΓ). In the RELAX procedure,

testing the dominance relationship on the labels takes𝑂 (𝑊 ). Thus,
the time complexity of relaxing the light edges is 𝑂 (𝑊 2 ·𝑚ΔΓ).

Theorem 2.3. The time complexity of the sequential (Δ, Γ)-stepping
algorithm is 𝑂

(
𝑊 · (𝑛 +𝑚) +𝑊 2 ·𝑚ΔΓ + 𝐿

Δ ·
𝑊
Γ )

)
.

Proof. The complexity of the algorithm mainly includes 𝑂 (𝑛 ·
𝑊 ) for the while loops, 𝑂 ( 𝐿Δ ·

𝑊
Γ ) for scanning the nonempty

buckets, 𝑂 (𝑊 2 ·𝑚ΔΓ) for identifying light edges and generating

labels, and 𝑂 (𝑚 ·𝑊 ) for relaxing heavy edges.
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3 PARALLEL (Δ, Γ)-STEPPING ALGORITHM
Algorithm 3 shows the parallel (Δ, Γ)-stepping algorithm for CSP.
Here, we assume the CRCWPRAMmodel. The nodes with their cor-

responding labels are randomly assigned to the processors (Line 2).

Set𝑈𝑞 stores all labels assigned to processor 𝑞 and 𝑖𝑛𝑑𝑖 stores the in-

dex of the processor that is responsible for node 𝑖 . Each processor 𝑞

has its own buckets 𝐵 [ 𝑗] [𝑘] ∩𝑈𝑞 ∀𝑗, 𝑘 . The algorithm sequentially

treats the next nonempty bucket; but performs the operations for a

phase of the current bucket in parallel. In Line 4, it finds the first non-

empty bucket in parallel through a reduction operation. During the

treatment of bucket 𝐵 [ 𝑗] [𝑘], each processor 𝑞 treats its labels. To

process each relaxation request (𝑎𝑙
𝑖
, 𝑖 ′) correctly, the requests must

be redistributed to the processor responsible for the target node 𝑖 ′

(which is 𝑖𝑛𝑑 (𝑖 ′)). For this purpose, we define a buffer 𝐵𝑈 𝐹𝐹𝑞 for

each processor 𝑞. Each process stores its relaxation requests in the

buffer of the processor responsible for the target nodes by using the

randomized dart throwing technique [5] (Lines 11-12). Then, each

processor scans its buffer and sequentially performs the relaxations

(Lines 13-14). Once all light edges are relaxed, the algorithm relaxes

the heavy edges (Lines 15-18).

We now determine the time complexity of Algorithm 3. For each

pair of nodes (𝑖, 𝑖 ′) ∈ 𝐶ΔΓ , we call a path efficient if (i) its cost and

its weight cannot be both improved by any other path from node 𝑖

to node 𝑖 ′; and (ii) among all paths with the same cost and the same

weight, it has the minimum length (minimum number of nodes).

Let 𝑄ΔΓ be the set of all (Δ, Γ)- paths that are efficient and 𝑙ΔΓ be

the number of nodes of the longest path (in terms of the number of

nodes) in 𝑄ΔΓ , i.e., 𝑙ΔΓ = max{|𝜋 | : 𝜋 ∈ 𝑄ΔΓ}.
Lemma 3.1. The number of phases of the sequential (Δ, Γ)-stepping

algorithm is bounded by 𝑂 ( 𝐿Δ ·
𝑊
Γ · 𝑙ΔΓ).

Proof. First, we show that each bucket needs at most 𝑙ΔΓ phases

to become empty. Let us assume that label 𝑎𝑙
𝑖
= (𝜋𝑙

𝑖
, 𝑐𝑙
𝑖
,𝑤𝑙

𝑖
) ∈

𝐵 [ 𝑗] [𝑘], where 𝑖 ≠ 1 and (𝜋𝑙
𝑖
= (𝑣1, ..., 𝑣ℎ0

, 𝑣ℎ1
, ..., 𝑣ℎ𝑟 ) |ℎ𝑟 = 𝑖),

is a label settled at the end of the phases of the current bucket and

𝜋𝑙
𝑖
is an efficient path. For more readability, we denote the corre-

sponding label of each node 𝑣ℎ𝑢 on the path 𝜋𝑖
𝑙
by 𝑎ℎ𝑢 . We assume

that labels 𝑎ℎ1
through 𝑎ℎ𝑟 are the only labels settled by iterations

of 𝐵 [ 𝑗] [𝑘]. By definition, before the first label removal from bucket

𝐵 [ 𝑗] [𝑘], the label 𝑎ℎ0
must have been settled in a previous bucket.

Hence, the edge (𝑣ℎ0
, 𝑣ℎ1
) has been relaxed and the label 𝑎ℎ1

has

already reached its final value. Thus, 𝑣ℎ1
will be settled in the first

phase for bucket 𝐵 [ 𝑗] [𝑘]. Similarly, it can be concluded inductively

that in phase 𝑢, 𝑣ℎ𝑢 is settled. At each phase at least one of the

labels is settled, and the cost and the weight on the path between

𝑣ℎ1
to 𝑣ℎ𝑟 is at most Δ and Γ; thus, after at most 𝑙ΔΓ phases, all labels

are settled. Furthermore, the algorithm has to traverse ⌈ 𝐿Δ ⌉ · ⌈
𝑊
Γ ⌉

buckets. Thus, the total number of phases is 𝑂 ( 𝐿Δ ·
𝑊
Γ · 𝑙ΔΓ).

Theorem 3.2. The parallel (Δ, Γ)-stepping algorithm for an ar-
bitrary graph with maximum degree 𝑑 , requires 𝑂 (𝑑 · 𝐿Δ ·

𝑊
Γ 𝑙ΔΓ ·

log(𝑛 ·𝑊 )) time and 𝑂 (𝑊 · (𝑛 +𝑚 +𝑊 ·𝑚ΔΓ)) work whp.

Proof. (sketch) The time complexity of the algorithm mainly

includes 𝑂 ( 𝐿Δ ·
𝑊
Γ · log(𝑛 ·𝑊 )) for finding a globally nonempty

bucket in each iteration and 𝑂 (𝑑 · 𝐿Δ ·
𝑊
Γ · 𝑙ΔΓ · log(𝑛 ·𝑊 )) for

generating/assigning relaxation requests via the following.

Algorithm 3 Parallel (Δ, Γ)-Stepping Algorithm
Input: 𝐺 (𝑉 , 𝐸) ,𝑊 , 𝐿, Δ,Γ
Output: 𝑝 , 𝑐𝑜𝑠𝑡 , 𝑤𝑒𝑖𝑔ℎ𝑡

1: Execute lines 1 to 4 from Algorithm 1

2: ( {𝑈𝑞 }, {𝑖𝑛𝑑𝑖 }) ←RandAssign(𝐴𝑖 )

3: while ∼isEmpty(𝐵) do
4: ( 𝑗, 𝑘) ← min

lex {( 𝑗, 𝑘) |𝐵 [ 𝑗 ] [𝑘 ] ≠ ∅}
5: for each process 𝑞 do in parallel
6: 𝑅𝑞 ← ∅
7: while 𝐵 [ 𝑗 ] [𝑘 ] ∩𝑈𝑞 ≠ ∅ do
8: 𝑡𝑚𝑝 ← 𝐵 [ 𝑗 ] [𝑘 ] ∩𝑈𝑞

9: 𝑅𝑞 ← 𝑅𝑞 ∪ 𝑡𝑚𝑝

10: 𝐵 [ 𝑗 ] [𝑘 ] ← 𝐵 [ 𝑗 ] [𝑘 ] \𝑈𝑞

11: for each 𝑎𝑙
𝑖
∈ 𝑡𝑚𝑝 and (𝑖, 𝑖′) ∈ 𝐸𝑙𝑖𝑔ℎ𝑡 do

12: Throw(𝑎𝑙
𝑖
, 𝑖′, 𝑖𝑛𝑑 (𝑖′))

13: for each (𝑎𝑙
𝑖
, 𝑖′) ∈ 𝐵𝑈𝐹𝐹𝑞 do

14: Relax(𝑎𝑙
𝑖
, 𝑖′)

15: for each 𝑎𝑙
𝑖
∈ 𝑅𝑞 and (𝑖, 𝑖′) ∈ 𝐸ℎ𝑒𝑎𝑣𝑦 do

16: Throw(𝑎𝑙
𝑖
, 𝑖′, 𝑖𝑛𝑑 (𝑖′))

17: for each (𝑎𝑙
𝑖
, 𝑖′) ∈ 𝐵𝑈𝐹𝐹𝑞 do

18: Relax(𝑎𝑙
𝑖
, 𝑖′)

19: if isEmpty(𝐴𝑛 ) then
20: (𝑝, 𝑐𝑜𝑠𝑡, 𝑤𝑒𝑖𝑔ℎ𝑡 ) ← (∅,∞,∞)
21: else
22: (𝑝, 𝑐𝑜𝑠𝑡, 𝑤𝑒𝑖𝑔ℎ𝑡 ) ← min-cost(𝐴𝑛)

Chernoff bounds theorem. Given ℎ subproblems 𝑙1, . . . , 𝑙ℎ of size

(0, 𝑑] distributed uniformly at random over 𝑝 processors. Let 𝐻 =∑ℎ
𝑖=1
|𝑙𝑖 |. Themaximum expected load𝐻 received by any processors

is bounded by

𝐻 =
𝐻

𝑝
+𝑂

(√︄
𝑑 · 𝐻
𝑝

log( 𝑝 · 𝐻
𝑑
) + 𝑑 · log(𝑑 · 𝑝 · 𝐻 )

)
We denote the number of generating/assigning requests in phase 𝑡

by𝐻𝑡 . According to Lemma 2.2,∪𝑡𝐻𝑡 = 𝑂 (𝑊 · (𝑛 +𝑚 +𝑊 ·𝑚ΔΓ)).
Thus, by setting 𝑝 =

𝑊 · (𝑛+𝑚+𝑊 ·𝑚ΔΓ)
𝐿
Δ ·

𝑊
Γ ·𝑙ΔΓ ·𝑑 ·log(𝑛 ·𝑊 ) , the maximum load on

each node over all phases is, 𝐻 = 𝑂

(
𝐿
Δ ·

𝑊
Γ · 𝑙ΔΓ · 𝑑 · log(𝑛 ·𝑊 )

)
.

In the future work, we will investigate the impacts of Δ and Γ on

the algorithm time complexity on random graphs and perform an

empirical analysis of our algorithm.
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