
An Envy-Free Auction Mechanism for Resource
Allocation in Edge Computing Systems

Tayebeh Bahreini
Department of Computer Science

Wayne State University
Email: tayebeh.bahreini@wayne.edu

Hossein Badri
Department of Computer Science

Wayne State University
Email: hossein.badri@wayne.edu

Daniel Grosu
Department of Computer Science

Wayne State University
Email: dgrosu@wayne.edu

Abstract—One of the major challenges in Mobile Edge Com-
puting (MEC) systems is to decide how to allocate and price
edge/cloud resources so that a given system’s objective, such as
revenue or social welfare, is optimized. One promising approach
is to allocate these resources based on auction models, in which
users place bids for using a certain amount of resources. In
this paper, we address the problem of resource allocation and
pricing in a two-level edge computing system. We consider a
system in which servers with different capacities are located in
the cloud or at the edge of the network. Mobile users compete
for these resources and have heterogeneous demands. We design
an auction-based mechanism that allocates and prices edge/cloud
resources. The proposed mechanism is novel in the sense that it
handles the allocation of resources available at the two-levels
of the system by combining features from both position and
combinatorial auctions. We show that the proposed mechanism is
individually-rational and produces envy-free allocations. The first
property guarantees that users are willing to participate in the
mechanism, while the second guarantees that when the auction is
finished, no user would be happier with the outcome of another
user. We evaluate the performance of the proposed mechanism by
performing extensive experiments. The experimental results show
that the proposed mechanism is scalable and obtains efficient
solutions.

Index Terms—edge computing, resource allocation, pricing

I. INTRODUCTION

Despite the tremendous developments in the technology of
mobile devices, they still suffer from limitations with respect
to storage, computation power, and more importantly, battery
life, which is the most crucial for mobile users [14]. These
drawbacks of mobile devices could be alleviated by running
applications remotely on a static infrastructure that does not
suffer from these limitations. Mobile Cloud Computing (MCC)
has been introduced to allow applications to perform their
computation on the cloud servers. MCC is a centralized
paradigm for mobile applications in which data, computation,
and storage are migrated from mobile devices to the resource-
rich and powerful servers located in the clouds. In fact, MCC is
an extension of cloud computing which considers the mobility
of users and the ad-hoc structure of mobile devices [9]. MCC
brings about many benefits for mobile users. It extends the
battery life of mobile devices, reduces the execution time
of applications, and improves the data storage capacity and
processing power. However, in MCC, centralized data centers
that are used by cloud services are usually far from end-
users, and therefore, communication between mobile devices

and datacenters involves many network hops and results in
high latencies. Thus, MCC may not be efficient for some
applications that need a very quick response or require a large
amount of data transmission [23]. In recent years, several
paradigms have been developed to resolve the inefficiencies
of MCC by sending a portion of data/computation to the edge
of the network instead of running on cloud data centers [24].

Mobile Edge Computing (MEC) has been recently intro-
duced to enable processing data at the edge of the net-
work, where edge can be any computing resource of the
network [25]. MEC has received significant attention from
researchers who have mainly focused on designing offload-
ing strategies in order to minimize the energy consumption,
average delay, and total cost. Compared to cloud data centers,
edge systems have much more limited resources leading to
increased competition among users who desire to acquire re-
sources within their proximity. Therefore efficiency of resource
allocation, incentives, and monetization are major challenges
in MEC systems. A recent NSF report on grand challenges in
edge computing [19], identified incentives and monetization
(i.e., developing incentive schemes for mobile users and edge
providers) as one of the five main challenges in the develop-
ment of edge computing systems.

In this paper, we address this challenge by developing an
auction-based mechanism for resource allocation and pricing
in edge computing systems. We consider a telecom-centric
MEC system, where the edge resources are located at the first
level of aggregation in the network. Such type of telecom-
centric MEC architecture received considerable attention in the
literature and significant support from industry and ETSI [20].
Deploying servers at the edge of the network in a telecom-
centric MEC system is expensive, and therefore, a limited
number of such servers are made available to mobile users.
The scarcity of resources at the edge of the network creates a
competitive environment for the mobile users, and therefore,
there is an urgent need to develop incentive-based resource
allocation and pricing mechanisms for MEC.

Our proposed resource allocation mechanism is novel since
it combines features from both position [26] and combinatorial
auctions [5] and handles heterogeneous resource requests
from mobile users and heterogeneous types of resources. It
determines envy-free allocations (i.e., allocations in which no
user can improve her utility by exchanging bids with any user



with the same request for resources) [8] and prices that lead
to close to optimal social welfare for the users, where the
social welfare is the sum of the users’ valuations. In addition,
the mechanism requires very small execution time even for
very large problem instances with hundreds of users. We
evaluate the performance of the proposed mechanism through
an extensive experimental analysis.

The rest of the paper is organized as follows. In Section II,
we review the recent work on pricing and allocation in edge
computing systems. In Section III, we formally define and
formulate the problem of allocation and pricing. In Section IV,
we present the proposed allocation and pricing mechanism and
prove its properties. In Section V, we describe the experimen-
tal setup and discuss the experimental results. In Section VI,
we conclude the paper and suggest possible directions for
future work.

II. RELATED WORK

Researchers approached the resource allocation problem
in mobile computing systems from different perspectives.
Several efforts have been devoted to optimizing computation
offloading and designing intelligent decision making proce-
dures for task migration that considers the dynamism of the
MEC environment, characteristics of applications and mobile
devices, network conditions, and user’s preferences [4], [6],
[10], [21]. Service placement is also an important problem
in edge computing which is associated with deciding where
the services should be run. In the placement problem, users’
services can be run either on the core cloud, or on the edge
of the network [2], [3], [7].

Considerable efforts have been devoted to the design of
mechanisms for resource allocation and pricing in cloud
computing. Several researchers approached the problem of
designing market-based resource allocation and pricing from
different perspectives [17], [28], [30], [31]. When it comes
to MCC systems, there are only few papers that addressed
the resource allocation problem by considering competitive
environments. Zhang et al. [29] proposed a mechanism based
on a multi-round sealed bid sequential combinatorial auction
to allocate limited wireless and computational resources from
multiple service providers to multiple users. The resource
allocation mechanisms designed for cloud and MCC systems
are not directly applicable to the edge computing settings
where resources are distributed over multiple levels and users
have different valuations for the services provided from dif-
ferent levels. We directly address these issues in the design
of our proposed mechanism by incorporating features that are
characteristic to position auctions [26].

Developing resource allocation mechanisms for mobile
blockchain applications has been an important challenge ad-
dressed by several researchers. Xiong et al. [27] proposed a
pricing mechanism for running the mining process of mobile
blockchain applications on the edge servers. They formulated
the problem as a two-stage Stackelberg game with the aim of
maximizing the profit of the service provider and the individual
utilities of the miners. In another work on employing MEC

for mobile blockchain, Jiao et al. [11] developed a truthful
mechanism that maximizes the social welfare. Users partic-
ipating in a truthful mechanism do not have incentives to
report valuations that are different from their true valuations
for their requests. The authors have considered a single service
provider and multiple users who are competing for a single
type of computational resource on the edge servers. Luong et
al. [15] also studied the problem of resource allocation in edge
computing systems for mobile blockchain applications. They
adopted a deep learning approach based on a multi-layer neural
network architecture to optimize the loss function which has
been defined as the expected, negated revenue of the service
provider.

In this paper, we develop an efficient pricing and resource
allocation mechanism for a two-level edge computing system
with multiple resources and heterogeneous demands. To the
best of our knowledge, the closest work to ours is by Kiani et
al. [12] who proposed a three-level hierarchical architecture for
mobile edge computing and an auction-based mechanism for
VM pricing and resource allocation. Their pricing mechanism
is based on the Amazons Elastic Compute Cloud (EC2) spot
pricing. In their algorithm, the price of each type of VMs
in each access point is determined based on the amount of
demands and available resources at the access point. However,
in their setting, requests are placed for only one VM instance
of a single type, that is, if a user needs to request a bundle of
VM instances of different types, the user has to request each
of the VM instances separately because requests for bundles
of VM instances are not allowed. Furthermore, if a user needs
to request multiple VM instances of the same type, the user
has to submit multiple requests (bids), one for each instance.
Submitting multiple bids for individual VM instances involves
the risk of ending up obtaining only a subset of the requested
set of VM instances. As an example, consider a computation
intensive application for which a user needs a specific bundle
of VM instances in order to execute and complete it by a given
deadline. Satisfying only a portion of the request would lead
to missing the deadline and to higher costs.

However, our mechanism allows requests for bundles of VM
instances and for multiple VM instances of the same type.
Our algorithm determines the price of VM instances based on
the bids of the users, while in [12], the price is determined
based on the amount of demands and the available resources.
In addition, our algorithm produces envy-free allocations.

Several researchers have applied some of the traditional
auction models for solving resource allocation problems in
computing systems [13], [16], [32]. The Vickrey-Clarke-
Groves (VCG) auction has been one of the most popular
truthful auctions [18]. The VCG auction is known to be
incentive-compatible and socially optimal. Since achieving
truthfulness in VCG requires the optimal solution of the social
welfare maximization problem, it is practically unfeasible to
be applied for problems where the exact solution to the social
welfare maximization cannot be obtained in a reasonable
amount of time. Also, other traditional auction models are not
directly applicable to the edge system settings where resources



are distributed over multiple levels, users typically request
bundles of multiple types of resources, and they have different
valuations for the services provided from different levels. Our
proposed mechanism is unique in the sense that it handles the
allocation of resources available at the two-levels of the system
by combining features from both position and combinatorial
auctions. The proposed mechanism is individually-rational and
produces envy-free allocations which are two important and
desirable properties of a mechanism. The first property guar-
antees that users are willing to participate in the mechanism,
while the second guarantees that when the auction is finished,
no user would be happier with the outcome of another user.

III. EDGE RESOURCE ALLOCATION AND PRICING
PROBLEM

We consider an edge computing provider that offers a
limited set of VM (Virtual Machine) instances at the edge and
cloud level. Edge resources are closer to users, therefore, users
prefer to run their applications on the edge servers to obtain
better performance. However, the capacity of edge resources
is more restricted than that of the cloud servers. Therefore,
there is competition between users to obtain VM instances
on the edge servers. In our setting, VM instances are sold by
the provider based on an auction model in which the price of
resources is not pre-defined but determined by employing an
auction mechanism.

We consider that there are n users who are competing for
resources situated at two levels, edge (l = 1), and cloud
(l = 2), where l denotes the level. The two levels offer
their resources to users as m types of VM instances, where
each type of VM instance is characterized by three types of
resources: vCPU (t = 1), memory (t = 2), and storage (t = 3).
A VM instance of type k provides qkt units of resource of type
t, where k = 1, . . . ,m and t = 1, 2, 3. The total number of
VM instances of type k available at level l is denoted by Ckl.
As an example, a ‘small’ VM instance of type k = 1 may
consist of 1 vCPU, 2GB of memory, and 20GB of storage.
That is, the instance of type k = 1 is characterized by q11 = 1,
q12 = 2, and q13 = 20.

User i requests a bundle of VM instances and submits a
bid for the bundle. The request of user i is denoted by θi =
(bi, ri) = (bi1, . . . , bim; ri1, . . . , rim), where bik is the bid
for a VM instance of type k, and rik is the number of VM
instances of type k requested by user i. Users’ requests are
submitted to a mechanism that determines the allocation of
VM instances to users and the price they have to pay for their
allocations.

Our proposed mechanism (presented in Section 4) can be
viewed as a hybrid of a multi-unit combinatorial auction [5]
and a position auction [26]. It is a position auction because, (i)
the auctioneer never allocates the bundle request of a user to
more than one level; (ii) users have different preferences for
each level (position) of resources, and resources at the edge
are more preferred. To characterize the user’s preference for
the edge and cloud level, we define αj as the preference factor
for level l, which is determined based on the average distance

between users and resources at level l (obviously, α1 > α2).
Furthermore, since there are several VM instances of the same
type in each level and users bid for a bundle of resources,
the problem can also be viewed as a multi-unit combinatorial
auction.

We assume that users are single minded. A user is single-
minded if he/she is only interested in a single bundle. The
user values this bundle and any superset of it at the same
amount, and all other bundles at zero. If the allocation function
allocates the requested bundle of a user and any superset of
it in the first level, then the user values the bundle and any
superset of that bundle at the same amount. If the allocation
function allocates the requested bundle of a user and any
superset of it in the second level, then the user values it at
the same amount (but this value is less than the value in the
first case); otherwise, the user values the allocation at zero.

Let ai = {a1i , a2i } be the allocation for user i determined
by an allocation mechanism, where ali = (ali1, . . . , a

l
im) is the

allocation of resources at level l for user i, and alik is the
number of VM instances of type k allocated to this user on
level l. Thus, the valuation function for user i is as follows,

vi(ai) =


α1

∑m
k=1 bikrik if ri � a1i and a2i = 0

α2

∑m
k=1 bikrik if ri � a2i and a1i = 0

0 otherwise
(1)

where ri � ali, if rik ≤ alik for i = 1, . . . n, k = 1, . . . ,m, and
l = 1, 2. The users’ valuation for each type of VM instance
is additive, that is, the valuation of a user for a set of VM
instances of the same type is proportional to the number of
VM instances in the set. The total valuation of a user is the
sum of the valuations for each of the types of requested VM
instances. Since α1 > α2, users prefer the allocation at the
edge level instead of that at the cloud level.

A mechanism determines the prices for VM instance bun-
dles based on the users’ declarations and the available re-
sources in the system. It decides a base price for resources
allocated at the edge level, denoted by π1, and a base price
for resources allocated at the cloud level, denoted by π2. Based
on these prices, the price of a unit of resource of type t on
level l is defined as πl · wt, where wt is the weight of the
resource of type t. Here, wt is used to differentiate the values
of a unit of different types of resources. Therefore, the price
of a VM instance of type k at level l is

∑3
t=1 πlwtqkt. In

other words, the price per unit of each VM type is the same
for winners of the same level, but winners of different levels
should pay differently for the same type of VM instance.

We assume that users have quasi-linear utilities (i.e., ui =
vi − pi) and are rational, in the sense that their goal is to
maximize their utility. Now, we formulate the Edge Resource
Allocation and Pricing (ERAP) problem. In this problem
formulation, the cloud/edge provider decides how to allocate
VM instances to users such that the welfare is maximized,



where the welfare is the sum of users’ valuations,

V =

2∑
l=1

n∑
i=1

αlxil(

m∑
k=1

bikrik) (2)

Considering this objective, the mixed-integer linear program
(MILP) formulation of ERAP is as follows:

ERAP-MILP:

maximize
2∑

l=1

n∑
i=1

m∑
k=1

αlbikrikxil (3)

subject to:
n∑

i=1

rikyilk ≤ Ckl ∀l,∀k (4)

mxil ≤
m∑

k=1

yikl ∀i,∀l (5)

2∑
l=1

yilk ≤ 1 ∀i,∀k (6)

xil ∈ {0, 1} ∀i,∀l (7)
yikl ∈ {0, 1} ∀i,∀l,∀k (8)

where xil is a binary decision variable associated with the
allocation of the request of user i to level l. Variable xil
is 1 if the bundle requested by user i is allocated to level l;
and 0, otherwise. The objective function (3) is to maximize the
welfare. Constraints (4) ensure that the total allocated requests
of each type of VM instances on each level does not exceed the
available capacity for that level. Here, yikl is a binary variable
equal to 1 if the request of user i for type k VM instances is
allocated at level l, and 0, otherwise. Constraints (5) ensure
that xil = 1 only if the requested bundle of user i is completely
allocated to level l. Constraints (6) guarantee that the request
of user i for type k is not allocated to more than one level.
Finally, constraints (7) and (8) guarantee the integrality of the
decision variables. ERAP-MILP is used in the experimental
results section to obtain the optimal allocation for the ERAP
problem and compare it with that obtained by the proposed
mechanism.

The payment that user i has to pay to the provider is defined
as,

pi =

2∑
l=1

m∑
k=1

3∑
t=1

πlwtqktrikxil (9)

If a user is not allocated the requested bundle or a superset
of it, then she pays 0. Table I shows the notation used in the
paper.

IV. ALLOCATION AND PRICING MECHANISM

Since it is unlikely to find polynomial time optimal mech-
anisms for ERAP, we give up on optimality and rely on
polynomial time heuristics. In this section, we design a greedy
mechanism for ERAP and investigate its properties.

TABLE I: Notation

Notation Description
n Number of users.
m Types of VM instances.
αl Preference factor for level l.
bik Bid of user i for a VM instance of type k.
rik Number of VM instances of type k requested by user i.
Ckl Number of VM instances of type k available at level l.
qkt Amount of resource of type t for a VM instance of type k.
Bi Average bid of user i.
πl Base price for level l resources.
pi Payment of user i.
wt Weight of resource of type t.
xil Decision variable equal to 1 if the request of user i is

allocated at level l, and 0, otherwise
yikl Decision variable equal to 1 if the request of user i for

type k VM instances is allocated at level l, and 0, otherwise

A. G-ERAP mechanism

The proposed mechanism, called G-ERAP (Greedy Edge
Resource Allocation and Pricing), is given in Algorithm 1.
The mechanism is invoked periodically at time intervals of a
specified duration. The allocation and price determined by the
mechanism is valid for the current time interval. The input to
G-ERAP consists of the vector of requests (θi) from users,
and the vector of VM capacities (C). G-ERAP determines
how these resources are assigned to users. The output of
the mechanism consists of the social welfare V , the price
for each unit of resources on the first level and the second
level (π1, π2), and the allocation matrix X , where X = [xil],
i = 1, . . . , n, and l = 1, 2. First, the mechanism determines
the average bid per unit of resource for each user (lines 6-7).
The average bid of user i is defined as follows,

Bi =

∑m
k=1 bikrik∑m

k=1

∑3
t=1 wtqktrik

(10)

Then, it sorts the users in non-increasing order of their
average bids (line 8), and allocates VM instances to users
starting from the first level (i.e., the edge level), accordingly.
For the current user, it checks if there are enough resources
at the current level (lines 13-16). If there are, it assigns the
requested VM instances to the user, and updates the social
welfare and the capacity (lines 17-20). If there are not enough
resources to allocate the requested bundle at the first level, it
increases the index of the level by one (i.e., it starts allocating
VM instances on the second level), and stores the index of
the user as the first allocated user in the second level, user
denoted by u (lines 24-28). In order to guarantee envy-freeness
and individual rationality, G-ERAP stops once it reaches to a
user for which there are not enough resources to satisfy the
requested bundle in the second level.

Next, G-ERAP determines the base payments for each unit
of resource on the first level and the second level (lines 29-33).
Let us assume that user u is the last user in the sorted order
which is allocated to the first level. Therefore, user u + 1 is
the first user in the list that is to be allocated on the second



Algorithm 1 G-ERAP Mechanism
Input: Vector of requests; θi = (bi1, . . . , bim; ri1, . . . , rim)
Input: Vector of VMs’ capacities at each level;

C = {C11, . . . , C1m;C21, . . . , C2m}
1: V ← 0
2: X ← 0
3: for k = 1, . . . ,m do
4: C̃1k ← C1k

5: C̃2k ← C2k

6: for i = 1, . . . , n do
7: Bi ←

∑m
k=1 bikrik∑m

k=1

∑3
t=1 wtqktrik

8: Sort users in non-increasing order of their Bi
9: l← 1

10: i← 1
11: while i ≤ n do
12: available← true
13: for k = 1, . . . ,m do
14: if C̃lk < rik then
15: available← false
16: break
17: if available then
18: for k = 1, . . . ,m do
19: C̃lk ← C̃lk − rik
20: V ← V + αlbikrik
21: xil ← 1
22: i← i+ 1
23: else
24: if l = 1 then
25: u← i− 1
26: l← l + 1
27: else
28: break
29: if i < n then
30: π2 ← α2Bi
31: else
32: π2 ← α2(Bi − ε)
33: π1 ← π2 +

(α1−α2)
2

(Bu +Bu+1)
Output: X = {x11, . . . , xn1;x12, . . . , xn2}
Output: V
Output: (π1, π2)

level. The payments for each unit of resources on the first and
second level are determined as follows,

π1 = α2B
∗ +

(α1 − α2)

2
(Bu +Bu+1) (11)

π2 = α2B
∗ (12)

where

B∗ =

{
Bu′+1 if u′ < n

Bu′ − ε otherwise
(13)

In this formulation, u′ is the last allocated user at the cloud
level (l = 2). If some users in the sorted list cannot be
allocated at the cloud level, then B∗ is defined based on the
bid of the first loser in the sorted list. But, if all the remaining
users from the first level are allocated at the second level, then
B∗ has a value a little less than the weighted bid of the last
allocated user (i.e., Bu′ − ε, where ε is a very small positive
real number).

B. Properties of the proposed mechanism
The proposed mechanism combines features from both

position [26] and combinatorial auctions [5] and is not truthful.
Here, we do not target truthfulness for our mechanism but
instead, we guarantee that it produces envy-free allocations.
This allows us to design a computationally efficient mecha-
nism suitable for selling resources in two-level edge computing
systems, where the edge resources are at the first level and the
cloud resources at the second. A famous example of a non-
truthful position auction mechanism used in practice is the
generalized second price auction employed by Google to sell
online advertising [8].

In the following we show that our mechanism is
individually-rational and produces envy-free allocations which
are two important and desirable properties of a mecha-
nism [18]. The first property guarantees that users are willing
to participate in the mechanism, while the second guarantees
that when the auction is finished, no user would be happier
with the outcome of another user.

Definition 1 (Individual Rationality). A mechanism is indi-
vidually rational if for each user i bidding her true valuation
for the bundle, vi − pi ≥ 0 (i.e., a user reporting her true
valuation for the bundle never incurs a loss).

Lemma 1. The base price at the edge level π1, satisfies π1 ≤
α1Bu, where u is the last user allocated at the edge level
(l = 1).

Proof. The base price for the edge level (level 1) resources is
given by:

π1 = α2B
∗ +

(α1 − α2)

2
(Bu +Bu+1)

≤ α2B
∗ +

(α1 − α2)

2
2Bu ≤ α2B

∗ + (α1 − α2)Bu

≤ α1Bu + α2(B
∗ −Bu)

Because user u is the last user allocated at the edge level,
B∗ ≤ Bu, and therefore, π1 ≤ α1Bu.

Theorem 1. G-ERAP is individually-rational.

Proof. To prove this, we need to show that the utility of a
user reporting (bidding) her true valuation for the requested
bundle is non-negative. There are three possible outcomes for
a participant user denoted by h:

Case I. User h is allocated to the edge level (Bh ≥ Bu).

vh − ph = α1Bh

m∑
k=1

3∑
t=1

wtqktrhk − π1
m∑

k=1

3∑
t=1

wtqktrhk

≥ α1Bu

m∑
k=1

3∑
t=1

wtqktrhk − π1
m∑

k=1

3∑
t=1

wtqktrhk

Using the result of Lemma 1, we have, vh − ph ≥ 0.
Case II. User h is allocated to the cloud level (Bu ≥ Bh ≥

B∗).

vh − ph = α2Bh

m∑
k=1

3∑
t=1

wtqktrhk − π2
m∑

k=1

3∑
t=1

wtqktrhk



≥ α2B
∗

m∑
k=1

3∑
t=1

wtqktrhk − π2
m∑

k=1

3∑
t=1

wtqktrhk

According to Equation (12), π2 = α2B
∗. Thus, vh − ph ≥ 0.

Case III. User h loses the auction (B∗ ≥ Bh). According
to Equation (13), vh = 0. Because user h is not allocated any
bundle of VMs, ph = 0. Thus, vh − ph = 0.

Definition 2 (Envy-Freeness). An allocation is envy-free if
no user can improve her utility by exchanging bids with any
user with the same request for VM instances.

Theorem 2. G-ERAP produces envy-free allocations.

Proof. Let us assume that user i is allocated to the first level
(edge), user i′ is allocated to the second level (cloud), and user
i′′ loses the auction, and all of them have the same request
for VM instances. It is obvious that a user cannot improve her
utility by exchanging bids with another user with an identical
request for VM instances that is allocated to the same level.
Therefore, we only need to show three cases.

Case I. Users i and i′ cannot improve their utilities by
exchanging their bids. By exchanging their bids, user i′ is
allocated to the first level (edge) and user i is allocated to the
second level (cloud). In this case, we need to show that,

vi(ai)− pi ≥ vi(ai′)− pi′ (14)

and,

vi′(ai′)− pi′ ≥ vi′(ai)− pi (15)

These equations are equivalen to,

α1

m∑
k=1

bikrik − π1
m∑

k=1

3∑
t=1

wtqktrik ≥

α2

m∑
k=1

bikrik − π2
m∑

k=1

3∑
t=1

wtqktrik (16)

and,

α2

m∑
k=1

bi′kri′k − π2
m∑

k=1

3∑
t=1

wtqktri′k ≥

α1

m∑
k=1

bi′kri′k − π1
m∑

k=1

3∑
t=1

wtqktri′k (17)

According to the definition of Bi, the average bid for a user
(Equation (10)), we rewrite Equation (16) as,

α1Bi

m∑
k=1

3∑
t=1

wtqktrik − π1
m∑

k=1

3∑
t=1

wtqktrik ≥

α2Bi

m∑
k=1

3∑
t=1

wtqktrik − π2
m∑

k=1

3∑
t=1

wtqktrik

=⇒ α1Bi − π1 ≥ α2Bi − π2 (18)

Similarly, Equation 17 is equivalent to,

α2Bi′

m∑
k=1

3∑
t=1

wtqktri′k − π2
m∑

k=1

3∑
t=1

wtqktri′k ≥

α1Bi′

m∑
k=1

3∑
t=1

wtqktri′k − π1
m∑

k=1

3∑
t=1

wtqktri′k

=⇒ α2Bi′ − π2 ≥ α1Bi′ − π1 (19)

Based on equations (18) and (19), we only need to show that,

Bi′(α1 − α2) ≤ π1 − π2 ≤ Bi(α1 − α2) (20)

Using the definition of Bu and B∗ from Equations (11) and
(13) we obtain,

B∗ ≤ Bi′ ≤ Bu+1 ≤ Bu ≤ Bi (21)

Also, based on Equations (11) and (12),

π1 − π2 =
(α1 − α2)

2
(Bu +Bu+1) (22)

thus,

(α1 − α2)

2
(Bi′ +Bi′) ≤ π1 − π2 ≤

(α1 − α2)

2
(Bi +Bi)

(α1 − α2)Bi′ ≤ π1 − π2 ≤ (α1 − α2)Bi (23)

Therefore, for this case, G-ERAP produces envy-free alloca-
tions.

Case II. Users i and i′′ cannot improve their utilities by
exchanging their bids. In this case, user i loses the auction
and user i′′ is allocated to the first level (edge). It is obvious
that the utility of user i does not improve, thus, we only need
to show that the utility of user i′′ does not improve. In this
case, we need to show that,

vi′′(ai′′)− pi′′ ≥ vi′′(ai)− pi (24)

This is equivalent to show that,

0 ≥ α1Bi′′

m∑
k=1

3∑
t=1

wtqktri′′k − π1
m∑

k=1

3∑
t=1

wtqkt · ri′′k (25)

which is equivalent to

0 ≥ α1Bi′′ − π1 (26)

Also, based on Equation (11),

π1 ≥ α2B
∗ +

(α1 − α2)

2
(2B∗) =⇒ π1 ≥ α1B

∗ ≥ α1Bi′′

(27)
which satisfies Equation (26).

Case III. User i′ and user i′′ cannot improve their utility by
exchanging their bids. The proof is similar to Case II.

V. EXPERIMENTAL RESULTS

In this section, we perform an extensive experimental anal-
ysis to evaluate the performance of the proposed mechanism,
G-ERAP. We compare the performance of G-ERAP with that
of the optimal solution obtained by solving the ERAP-MILP
problem using CPLEX.



 0.01

 0.1

 1

 10

 100

 1000

 10000

100 200 300 400 500 600 700 800 900 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
e

c
)

n

G-ERAP(α1=0.6, α2=0.4)
G-ERAP(α1=0.9, α2=0.1)
CPLEX(α1=0.6, α2=0.4)
CPLEX (α1=0.9, α2=0.1)

(a) Execution time

 50

 100

 150

 200

 250

 300

 350

 400

100 200 300 400 500 600 700 800 900 1000

S
e

rv
e

d
 u

s
e

rs

n

G-ERAP(α1=0.6, α2=0.4)
G-ERAP(α1=0.9, α2=0.1)
CPLEX(α1=0.6, α2=0.4)

CPLEX (α1=0.9, α2=0.1)

(b) Number of served users

Fig. 1: The effect of the total number of users, n, on the execution time and the number of served users.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

100 200 300 400 500 600 700 800 900 1000

V
r

n

α1=0.6, α2=0.4
α1=0.9, α2=0.1

(a) Social welfare

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

100 200 300 400 500 600 700 800 900 1000

R
r

n

α1=0.6, α2=0.4
α1=0.9, α2=0.1

(b) Revenue

Fig. 2: The effect of the total number of users, n, on the social welfare and the revenue.

A. Experimental setup

We generate several problem instances with different num-
ber of users, demands, and capacities for the edge and cloud.
We consider that the provider offers four types of VM in-
stances as shown in Table II. These types of VM instances
are based on Amazon’s Elastic Compute Cloud (EC2) M3
family of instances. In this family, four types of VM instances
are defined, medium, large, xlarge, and 2xlarge. Each type
of VM instance provides a combination of three types of
resources, vCPU, memory, and storage. The distribution of the
other parameters that are used to generate problem instances
in our simulation experiments are shown in Table III. In this
table, we denote by U [a, b], the uniform distribution within

TABLE II: Types of VM instances used in the experiments.

Type vCPU Memory(GB) SSD Storage (GB)
medium 1 3.75 (1 unit) 1× 4 (4 units)
Large 2 7.5 (2 units) 1× 32 (32 units)
Xlarge 4 15 (4 units) 2× 40 (80 units)
2xlarge 8 30 (8 units) 2× 80 (160 units)

interval [a, b], and by N(µ, σ), the normal distribution with
mean µ and variance σ. To generate the bids bik of user i, we
first draw from U [1, 10], the bid bi1 for the first type of VM
instances requested by user i. Then, we obtain the bids for the
other types of VM instances requested by user i according to
the first row in the table. We also use a similar technique to
generate rik, the number of VM instances of each type that
are requested by user i. The vector of resource weights w, for
the three types of resource is given in the last row of the table.

The G-ERAP mechanism is implemented in C++ and
the experiments are conducted on an Intel 1.6GHz Core
i5 system with 8 GB RAM. For solving ERAP-MILP, we
use the CPLEX 12 solver provided by IBM ILOG CPLEX
optimization studio for academics initiative [1].

B. Analysis of results

First, we investigate the effects of the number of users on
the performance of G-ERAP. For this purpose, we consider a
fixed amount of total capacity for each type of VM instances at
both the edge and cloud level. For each type of VM instance,
the total capacity is drawn from the uniform distribution within
the interval [0, 10000]. We define a parameter, called cloud-



 0.01

 0.1

 1

 10

 100

 1000

5/5 6/4 7/3 8/2 9/1

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
e

c
)

C
r

G-ERAP(α1=0.6, α2=0.4)
CPLEX(α1=0.6, α2=0.4)

G-ERAP(α1=0.9, α2=0.1)
CPLEX (α1=0.9, α2=0.1)

(a) Execution time

 60

 61

 62

 63

 64

 65

5/5 6/4 7/3 8/2 9/1

S
e

rv
e

d
 u

s
e

rs

C
r

G-ERAP(α1=0.6, α2=0.4)
CPLEX(α1=0.6, α2=0.4)

G-ERAP(α1=0.9, α2=0.1)
CPLEX (α1=0.9, α2=0.1)

(b) Number of served users

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

5/5 6/4 7/3 8/2 9/1

V
r

C
r

α1=.6, α2=.4
α1=.9, α2=.1

(c) Social welfare

 0.75

 0.8

 0.85

 0.9

 0.95

 1

5/5 6/4 7/3 8/2 9/1

R
r

C
r

α1=.6, α2=.4
α1=.9, α2=.1

(d) Revenue

Fig. 3: The effect of the cloud-edge capacity ratio, Cr, on the execution time, number of served users, social welfare, and
revenue (n =100).

TABLE III: Simulation parameters

Parameter Distribution
bik bi1 +N(bi1, 0.5bi1)
bi1 U [0, 10]
rik N(ri1, 0.7ri1)
ri1 U [0, 20]
w [8, 4, 1]

edge capacity ratio, Cr =
∑m

k=1(
Ck2

Ck1
), which is the sum of

the ratios of the capacity for each VM instance type at the
cloud and the capacity at the edge level. In our first set of
experiments, we set the capacity ratios for each type of VM
instances at 7/3, by assigning 70% of the total capacity of each
type of VM instance on the cloud side, and 30% on the edge
side. Thus, Cr = 7

3 . We perform experiments with two sets of
problem instances. For the first set, we consider the preference
factors α1 = 0.6, and α2 = 0.4, while for the second set,
we consider α1 = 0.9, α2 = 0.1. We consider different
number of users n, ranging from 100 to 1000. We compare the
performance of G-ERAP against that of the solutions obtained
by solving ERAP-MILP using CPLEX.

Figure 1a shows the execution time of G-ERAP and that of
CPLEX for the two sets of problem instances. In all the cases,

the execution time of G-ERAP is less than one millisecond,
significantly smaller than the time required by CPLEX to
obtain the solution. The execution time of G-ERAP is linear
in the number of users, while that of CPLEX is exponential.

Figure 1b shows the number of served users (i.e., the
number of users who are successfully allocated at either the
cloud level or the edge level) when employing the solution
determined by G-ERAP and that determined by CPLEX. In
most cases, both CPLEX and G-ERAP serve more users for
the second set (α1 = 0.9, α2 = 0.1). For instances with a small
number of users, there is no significant difference between
the solution of our mechanism and that of CPLEX in terms
of the number of served users. When the number of users
increases, we observe that the CPLEX solution serves more
users than our mechanism. The reason is that CPLEX finds the
optimal allocation, while G-ERAP finds an allocation that is
not optimal. Despite the fact that G-ERAP is not optimal, our
experiments show that the social welfare and the total revenue
obtained by G-ERAP are close to those obtained by CPLEX
(Figure 2).

Social welfare and revenue are two important measures for
the efficiency of resource allocation mechanisms. To character-
ize the welfare and revenue obtained by G-ERAP, we define
two relative metrics: (i) the social welfare ratio, Vr = VG-ERAP

VCPLEX
,



where VG-ERAP is the social welfare obtained by G-ERAP, and
VCPLEX is the social welfare obtained by the CPLEX solution;
and, (ii) the revenue ratio, Rr = RG-ERAP

RCPLEX
, where RG-ERAP

is the revenue obtained by G-ERAP, and RCPLEX is the
revenue obtained by the CPLEX solution. RCPLEX is calculated
using Equation 9 and the allocation matrix X determined by
CPLEX. Figure 2a shows the social welfare ratio for the two
sets of problem instances. The results obtained by G-ERAP
for both sets of problem instances are very close to those
of CPLEX. The performance of G-ERAP in terms of social
welfare is very close to that obtained by the CPLEX solution
(with a social welfare ratio above 0.94). However, G-ERAP
is more sensitive to the number of users for the second set of
instances (α1 = 0.9, α2 = 0.1). Figure 2b shows the revenue
ratios. G-ERAP exhibits similar behavior as that observed in
the case of social welfare. There is no significant gap between
the performance of G-ERAP and that of CPLEX. Again, G-
ERAP seems to be more sensitive to the number of users for
the second set of instances (α1 = 0.9, α2 = 0.1).

In the next set of experiments, we investigate the effects of
the cloud-edge capacity ratio, Cr, on the performance of G-
ERAP. We draw the total capacity of each VM instance type
from the uniform distribution within the interval [0, 2500] and
keep it fixed. We allocate the capacity to each level according
to the following cloud-edge capacity ratios, Cr = 5

5 ,
6
4 ,

7
3 ,

8
2 ,

and 9
1 . These ratios will allow us to investigate the per-

formance of G-ERAP for systems with plenty of available
resources at the edge level (Cr = 5

5 ), and systems with very
few resources at the edge level (Cr = 9

1 ). We perform our
experiments with two sets of problem instances. In the first set,
we consider the preference factors α1 = 0.6, and α2 = 0.4,
while in the second set, we consider α1 = 0.9, α2 = 0.1.
Figure 3a shows the effects of Cr on the execution time of both
G-ERAP and CPLEX, for the two sets of problem instances.
The execution time of G-ERAP is less than 0.1 milliseconds
for all the four values of Cr. Also, the execution time of
both G-ERAP and CPLEX are not significantly sensitive
to variations in Cr. Figure 3b shows the effects of Cr on
the number of served users when considering the solution
obtained by the CPLEX solver and by G-ERAP. Similar to the
execution time, we observe that Cr does not have significant
effects on the number of served users for both G-ERAP and
CPLEX solutions. Figure 3c shows the effect of Cr on the
social welfare for the two sets of problem instances. G-ERAP
is able to maintain a welfare ratio above 0.86 even for the
worst cases, where resources are very scarce at the edge level
(Cr = 9

1 ). A similar behavior is observed when we consider
the effects of Cr on the revenue (Figure 3d), where the revenue
ratio is kept above 0.83 even when the resources at the edge
level are very scarce. We also observe that when the edge level
is more preferred (α1 � α2), the efficiency of the proposed
algorithm is more significantly affected by the distribution of
the resources among the levels. This is because the valuation
for the edge level resources is higher and those resources are
scarcer. Overall, G-ERAP requires very small execution time
and yields social welfare and revenue close to those obtained

by the CPLEX solution.

VI. CONCLUSION

We proposed G-ERAP, a greedy resource allocation and
pricing mechanism for MEC systems which considers hetero-
geneous servers and resources of different types. We proved
the properties of the proposed mechanism and evaluated its
efficiency by performing an extensive experimental analysis
on several MEC resource allocation problem instances. The
experimental results showed that the proposed mechanism has
a very small execution time and yields revenue close to the
optimal. The small execution time and the near-optimality of
allocations makes the proposed mechanism a very suitable
candidate for deployment in current and future edge computing
systems. As a future research, we plan to design allocation
mechanisms for settings in which users have non-uniform
preferences over edge/cloud servers. We can define preferences
based on the location of users and the type of applications
that they need to execute. For example, if users have to exe-
cute computation-intensive applications, they would prefer the
cloud servers, while if they have to execute small applications
requiring a large amount of communication, they would prefer
the edge servers.

ACKNOWLEDGMENT

This research was supported in part by NSF under grant
IIS-1724227. We would like to thank our shepherd, John
Kubiatowicz and the anonymous reviewers for their helpful
and constructive suggestions, which considerably improved the
quality of the paper.

REFERENCES

[1] IBM ILOG CPLEX V12.1 user’s manual, 2009.
[2] T. Bahreini and D. Grosu. Efficient placement of multi-component

applications in edge computing systems. In Proc. 2nd ACM/IEEE Symp.
on Edge Computing, pages 5:1–5:11, October 2017.

[3] M. Chowdhury, M. R. Rahman, and R. Boutaba. Vineyard: Virtual
network embedding algorithms with coordinated node and link mapping.
IEEE/ACM Trans. on Networking, 20(1):206–219, 2012.

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
elastic execution between mobile device and cloud. In Proc. of the 6th
Conf. on Computer Systems, pages 301–314. ACM, 2011.

[5] P. Cramton, Y. Shoham, and R. Steinberg. Combinatorial Auctions. MIT
Press, 2006.

[6] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer with
code offload. In Proc. 8th ACM International Conf. on Mobile Systems,
Applications, and Services, pages 49–62, 2010.

[7] D. Dutta, M. Kapralov, I. Post, and R. Shinde. Embedding paths into
trees: Vm placement to minimize congestion. In European Symposium
on Algorithms, pages 431–442. Springer, 2012.

[8] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and
the generalized second-price auction: Selling billions of dollars worth
of keywords. American Economic Review, 97(1):242–259, March 2007.

[9] X. Fan, J. Cao, and H. Mao. A survey of mobile cloud computing. zTE
Communications, 9(1):4–8, 2011.

[10] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic. Adaptive
offloading inference for delivering applications in pervasive computing
environments. In Proc. 1st IEEE Int. Conf. on Pervasive Computing and
Communications, pages 107–114, 2003.

[11] Y. Jiao, P. Wang, D. Niyato, and Z. Xiong. Social welfare maximization
auction in edge computing resource allocation for mobile blockchain.
arXiv preprint arXiv:1710.10595, 2017.



[12] A. Kiani and N. Ansari. Toward hierarchical mobile edge computing: An
auction-based profit maximization approach. IEEE Internet of Things
Journal, 4(6):2082–2091, 2017.

[13] Z. Kong, C.-Z. Xu, and M. Guo. Mechanism design for stochastic virtual
resource allocation in non-cooperative cloud systems. In Proc. IEEE Int.
Conf. on Cloud Computing, pages 614–621, 2011.

[14] K. Kumar and Y.-H. Lu. Cloud computing for mobile users: Can
offloading computation save energy? Computer, 43(4):51–56, 2010.

[15] N. C. Luong, Z. Xiong, P. Wang, and D. Niyato. Optimal auction for
edge computing resource management in mobile blockchain networks:
A deep learning approach. arXiv preprint arXiv:1711.02844, 2017.

[16] L. Mashayekhy, M. M. Nejad, and D. Grosu. A PTAS mechanism for
provisioning and allocation of heterogeneous cloud resources. IEEE
Transactions on Parallel and Distributed Systems, 26(9):2386–2399,
2015.

[17] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos. An
online mechanism for resource allocation and pricing in clouds. IEEE
Transactions on Computers, 65(4):1172–1184, 2016.

[18] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, New York, NY, USA, 2007.

[19] NSF. NSF Workshop Report on Grand Challenges in Edge Computing.
2016.

[20] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal,
et al. Mobile-edge computing - introductory technical white paper.
European Telecommunications Standards Institute (ETSI), Mobile-edge
Computing (MEC) industry initiative, September 2014.

[21] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan. Odessa: enabling interactive perception applications on mobile
devices. In Proc. 9th ACM Int. Conf. on Mobile Systems, Applications,
and Services, pages 43–56, 2011.

[22] T. Sandholm. Algorithm for optimal winner determination in combina-
torial auctions. Artificial intelligence, 135(1-2):1–54, 2002.

[23] M. Satyanarayanan. A brief history of cloud offload: A personal journey
from odyssey through cyber foraging to cloudlets. GetMobile: Mobile
Computing and Communications, 18(4):19–23, 2015.

[24] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for
vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23, 2009.

[25] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[26] H. R. Varian. Position auctions. International Journal of Industrial
Organization, 25(6):1163 – 1178, 2007.

[27] Z. Xiong, S. Feng, D. Niyato, P. Wang, and Z. Han. Edge computing
resource management and pricing for mobile blockchain. arXiv preprint
arXiv:1710.01567, 2017.

[28] S. Zaman and D. Grosu. Combinatorial auction-based allocation of
virtual machine instances in clouds. Journal of Parallel and Distributed
Computing, 73(4):495–508, 2013.

[29] H. Zhang, F. Guo, H. Ji, and C. Zhu. Combinational auction-based
service provider selection in mobile edge computing networks. IEEE
Access, 5:13455–13464, 2017.

[30] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu. A frame-
work for truthful online auctions in cloud computing with heterogeneous
user demands. IEEE Transactions on Computers, 65(3):805–818, 2016.

[31] L. Zhang, Z. Li, and C. Wu. Dynamic resource provisioning in cloud
computing: A randomized auction approach. In Proc. IEEE INFOCOM,
pages 433–441, 2014.

[32] Y. Zhang, M. Li, K. Bai, M. Yu, and W. Zang. Incentive compatible
moving target defense against vm-colocation attacks in clouds. In
IFIP International Information Security Conference, pages 388–399.
Springer, 2012.


