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ABSTRACT
Mobile Edge Computing (MEC) is a new paradigm which has
been introduced to solve the ine�ciencies of mobile cloud com-
puting technologies. �e key idea behind MEC is to enhance
the capabilities of mobile devices by forwarding the compu-
tation of applications to the edge of the network instead of
to a cloud data-center. One of the main challenges in MEC
is determining an e�cient placement of the components of a
mobile application on the edge servers that minimizes the cost
incurred when running the application. In this paper, we ad-
dress the problem of multi-component application placement
in edge computing by designing an e�cient heuristic on-line
algorithm that solves it. We also present aMixed Integer Linear
Programming formulation of the multi-component applica-
tion placement problem that takes into account the dynamic
nature of users’ location and the network capabilities. We
perform extensive experiments to evaluate the performance of
the proposed algorithm. Experimental results indicate that the
proposed algorithm has very small execution time and obtains
near optimal solutions.
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1 INTRODUCTION
Mobile devices have become the primary computing platforms
for many users, mainly because of their availability and con-
venience. Many of the popular mobile applications require

heavy processing while mobile devices have limited compu-
tational resources and storage capacity. Furthermore, some
mobile applications such as video streaming, speech recogni-
tion, and navigation consume a large amount of energy and
reduce the ba�ery life of mobile devices. �ese limitations
of mobile devices can be addressed by running applications
remotely on a static infrastructure that does not su�er from
these limitations. Mobile Cloud Computing (MCC) has been
introduced to allow mobile applications to perform their com-
putation on cloud servers. MCC is a centralized paradigm for
mobile applications in which data computation and storage are
moved from mobile devices to resource-rich servers located
in clouds. In fact, MCC is an extension of cloud computing
which considers the mobility of users and the ad-hoc structure
of mobile devices [8].

Rudenko et al. [13] and Flinn et al. [9] are among the �rst re-
searchers who suggested runningmobile applications on cloud
servers in order to extend the ba�ery life of mobile devices.
Rudenko et al. [13] evaluated the e�ectiveness of o�oading
techniques by conducting several experiments. �eir results
indicate that remote execution of mobile applications can re-
duce the energy consumption signi�cantly. However in MCC,
the centralized data-centers that are used by cloud services
are usually far from end-users, therefore, the communication
between mobile devices and data-centers involves many net-
work hops and results in high latencies. �us, MCC is not
e�cient for some applications that need a quick response time
or transmit large amounts of data [14].

In recent years, several paradigms such as Cloudlet [15],
Fog Computing [4], Follow Me Cloud [16], and Mobile Edge
Computing (MEC) [12] have been proposed to solve the in-
e�ciencies of mobile cloud computing by sending a portion
of data/computation to the edge of the network instead of
sending it to the cloud data-centers.

Cloudlet, an architecture proposed by Satyanarayanan et
al. [15] has the goal of bringing the cloud closer to the user.
A Cloudlet, also known as mobile micro-cloud, is a cluster
of multi-core computers with high internal connectivity that
is available for nearby mobile devices. Mobile Edge Comput-
ing [12] was also introduced to enable processing data at the
edge of the network, where an edge can be any computing
resources of the network. In contrast to Cloudlets, edge nodes
are widely deployed and available to all mobile users, not just
to some speci�c ones. Since edge nodes can be co-located with
base stations, they have access to additional information such
as position and mobility of users, while Cloudlets are mostly



stationary computers with fast and stable internet access, of-
fering computing, bandwidth, and storage resources to nearby
mobile users; and users access them via a local area network
such as Wi-Fi [3].

One of the challenging issues in MEC is that the users
change their locations dynamically and the current assign-
ment of components to the edge servers might not be the best
in terms of the costs involved. �us, in order to minimize
the costs of executing the application, some of the applica-
tion’s components might need to be o�oaded to di�erent edge
or core cloud nodes. �e problem of assigning components
of an application to the edge/core nodes is called the multi-
component application placement problem.

Application placement is an important problem in MEC
and is associated with deciding on which resources the com-
ponents of an application should be executed. In this problem,
each application is represented as a graph in which nodes are
components of the application and edges between nodes indi-
cate the communication between them. Physical resources can
also be represented by a graph in which nodes represent com-
puting resources (servers) and edges between nodes represent
communication links between them. �us, the application
placement problem can be viewed as the problem of mapping
application graphs onto resource graphs.

In the placement problem, the components of a users’ ap-
plication can be run either on the core cloud, or on the edge of
the network. In MEC, the resource availability, network con-
ditions, and users’ locations are changing dynamically. Hence,
the components of the application may need to migrate from
one edge/core server to another over time. �erefore, a good
solution for placing applications should consider both the
network conditions and the mobility of users.

1.1 Our Contributions
In this paper, we formulate the o�ine version of the multi-
component application placement problem as a Mixed Integer
Linear Program (MILP). �e solution obtained by solving the
o�ine version is used as the lower bound on the performance
of the proposed online algorithm. Our formulation of the prob-
lem departs from the existing work since it does not impose
any restrictions on the topology of the graphs characterizing
both the applications and the physical resources. Consider-
ing this general se�ing, we design a heuristic algorithm that
solves the online version of the multi-component application
placement problem. Our goal is to obtain an algorithm based
on simple algorithmic techniques such as matching and local
search, and to avoid the use of complex approaches such as
those based on Markov Decision Processes. �e main idea in
the design of our algorithm is to determine the best match-
ing between components of the application and the edge/core
servers without considering the communication requirements
among the components, and then consider the communication
requirements among the components and use a local search
procedure to improve the solution. �e proposed algorithm
has low complexity and adds a negligible overhead to the exe-
cution of the applications. We perform extensive experiments
to characterize the performance of the proposed algorithm

using synthetically generated traces. We compare the perfor-
mance of our algorithm against the optimal solution obtained
by solving the o�ine version of the problem.

1.2 Organization
�e rest of the paper is organized as follows. In Section 2, we
review the related work on the placement problem in cloud
and edge computing. In Section 3, we introduce the multi-
component application placement problem and present its
MILP formulation. In Section 4, we present the proposed
heuristic algorithm. In Section 5, we present and analyze the
experimental results. In Section 6, we conclude the paper and
suggest possible directions for future research.

2 RELATEDWORK
Recently, several approaches for solving variants of the appli-
cation/service placement problem in data-centers have been
proposed. �ese approaches are not directly applicable toMEC
because they do not take into account the changes in execution
costs due to the mobility of users when making placement
decisions. Chowdhury et al. [6] proposed an LP-based approx-
imation algorithm for minimizing the total cost with some
considerations on load balancing. �e approximation ratio
of their algorithm is O (N ), where N is the number of nodes
in the data-center. In their formulation, they assumed that
servers in the data-center do not support resource sharing
among di�erent application nodes. Another LP-based approx-
imation algorithm for solving the placement problem of tree
applications with the goal of minimizing the total network
congestion was developed by Bansal et al. [2]. �eir algorithm
has an approximation ratio of� = O (D2 log(ND)) withNO (D )

time-complexity, where D is the number of levels of nodes in
the application graph. �e authors also provided an online
algorithm to minimize the maximum load balance on the phys-
ical nodes and links with competitive ratio of O (� log(N )).
Du�a et al. [7] proposed an o�ine LP-based approximation
algorithm for solving the placement problem with the objec-
tive to minimize the congestion on the physical links. �ey
assumed that the resource graph has a tree structure. �e
algorithm places application nodes on the leaves of the tree.
However, the se�ings and objectives of the placement prob-
lems considered by these authors are di�erent from those we
consider in this paper and the algorithms do not directly ap-
ply to the multi-component application placement problem
in MEC.

�e application placement problem in MEC has to consider
several issues that were not present in the data-center se�ings.
A�er the initial application placement, mobile users may move
to a di�erent location. In addition to this, the resource availabil-
ity of servers may change over time. An e�cient component
placement algorithm must be adaptive to this dynamic se�ing
and must change the location of components over time to min-
imize the cost, if necessary. Many of the dynamic application
placement approaches formulated the problem as a sequen-
tial decision making problem in the framework of Markov
Decision Processes (MDPs). Ksentini et al. [10] modeled the
application/service migration problem considering the user’s
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mobility in the Follow Me Cloud paradigm using MDPs [16].
In their formulation, they considered one dimensional mobil-
ity pa�erns. �ey implemented the value iteration algorithm
in MATLAB to �nd the optimal application migration policy.
Urgaonkar et al. [17] modeled the application placement prob-
lem as an MDP. To reduce the state space, they converted the
problem into two independent MDP problems with separate
state spaces and designed an online algorithm for the new
problem that is provably cost-optimal. Wang et al. [18] pre-
sented a novel online algorithm for the application placement
problem in the context of MEC. �ey modeled the problem
as an MDP.�en, they reduced the state space by deriving a
new MDP model in which states are de�ned only based on
the distance between user and servers. �e authors provided
an online algorithm for the distance-based MDP and showed
that the distance-based MDP is a good approximation to the
original problem. An online approximation algorithm for the
placement problem was also developed by Wang et al. [19]
in which both the application and the resource graphs are
assumed to have a tree topology. �eir algorithm �nds the
best placement for nodes as well as links between nodes such
that the maximum weighted cost on each physical node and
link of the system is minimized.

Most of the dynamic application migration approaches de-
scribed above di�er from the approach we propose in this
paper in several aspects. �ey either considered a restricted
topology for the application and resource graphs or consid-
ered di�erent objectives. �e above dynamic approaches are
based on complex techniques and algorithms while ours is
based on standard algorithmic techniques such as matching
and local-search. Because our approach employs low complex-
ity algorithms it is very suitable for implementation in real
MEC systems.

3 MULTI-COMPONENT APPLICATION
PLACEMENT PROBLEM

In this section, we formulate the multi-component application
placement problem (MCAPP). We consider a time slo�ed system
where the location of users may change from one time slot to
another. �e time slots are denoted by t , t = 1, . . . ,T , whereT
is the maximum time required to complete the execution of
the application in the system. �e locations of users do not
change during one time slot. �e location of a user is speci�ed
by its coordinates in a two-dimensional grid of cells. A user
can change its location between two time slots, that is, it can
move into any of the neighboring cells or stay in the same cell.

We consider an edge system composed of a set S = {S1, S2,
. . . , Sm } ofm servers. Servers can be edge or core cloud servers
having di�erent computational powers, and therefore, di�er-
ent costs. �e cost of running one unit of load on server Si in
time slot t is denoted by cit . Servers can be located in any cell
of the two-dimensional grid and their positions are �xed.

Each service/application C of a user consists of a set of
components C = {C1,C2, . . . ,Cn }. �e processing require-
ment of component Cj in time slot t is denoted by pjt . �is
represents the amount of componentCj ’s load that needs to be
processed in time slot t . We do not impose any restrictions on

the communication between the components, any component
can communicate with any other component of the applica-
tion (i.e., the graph modeling the application is not restricted).
We also assume that a server can communicate with any other
server, incurring di�erent costs for di�erent servers. Here
the objective is to �nd a mapping between components and
servers, such that the total placement cost is minimized. �e
total placement cost is composed of four types of costs:

(i) �i jt : the cost of running component Cj on server Si in
time slot t . �is cost is de�ned as the product of the
cost of processing a unit load at Si and the amount of
load that needs to be processed:

�i jt = cit · pjt (1)

(ii) �ii0 jt : the cost of relocating component Cj from server
Si to server Si0 in time slot t . In MEC, the locations
of users may change during the execution of their
applications. Also, the workload of the edge servers
and other conditions of the network may vary from
time to time. �erefore, it may be required to change
the location where the components are running. �e
relocation cost is de�ned as follows:

�ii0 jt = lii0t · qjt · rt (2)

where lii0 is the distance between servers Si and Si0
in time slot t , qjt is the size of component Cj in time
slot t that would migrate, and rt is the cost of trans-
ferring one unit of data over one unit of distance in
time slot t . Here the distance between servers is the
Manha�an distance, that is, if server Si is located in
cell (x ,�) and server Si0 is located in cell (x 0,�0) in
time slot t , then the distance between the two servers
is given by lii0t = |x � x 0 | + |� � �0 |.

(iii) �i jt : the communication cost between component Cj
(assigned to server Si ) and the user in time slot t . In each
time slot, data communication between components
and the user may be required. �is cost is de�ned as
follows:

�i jt = dit · hjt · rt (3)

where hjt is the size of data that must be transferred
between component Cj and the user in time slot t ,
and dit is the distance between server Si (that runs
component Cj ) and the user, in time slot t . �e dis-
tance between the server and user is the Manha�an
distance as de�ned in (ii) above.

(iv) �ii0 j j0t : the communication cost between components
Cj and Cj0 that are located on servers Si and Si0 , re-
spectively, in time slot t . Suppose that component Cj
is located on server Si and component Cj0 is located
on server Si0 . �e communication cost between com-
ponents is de�ned as follows:

�ii0 j j0t = lii0t · �j j0t · rt (4)

where �j j0t is the size of data that must be transferred
between component Cj and component Cj0 in time
slot t .
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In Table 1, we present the notation that is used throughout
the paper.

We consider the o�ine version of MCAPP in which all the
parameters speci�ed above are assumed to be known in ad-
vance. �is assumption will be removed in the next section,
where we consider the online version of the problem and pro-
vide a heuristic algorithm to solve it. �e objective of MCAPP
is to minimize the total cost of executing the application. Con-
sidering this objective and the o�ine se�ing, we formulate the
MCAPP problem as a Mixed Integer Linear Program (MILP)
as follows:

MCAPP-MILP:

min
mX

i=1

nX

j=1

TX

t=0
(�i jt + �i jt ) · xi jt +

mX

i=1

mX

i0=1

nX

j=1

TX

t=1
�ii0 jt · �ii0 jt +

mX

i=1

mX

i0=1

nX

j=1

nX

j0=1

TX

t=0
�ii0 j j0t · zii0 j j0t (5)

subject to:
nX

j=1
xi jt  1 8i, t (6)

mX

i=1
xi jt = 1 8j, t (7)

xi jt + xi0 j0t � 1  zii0 j j0t 8i, i0 , j, j0 , t (8)

xi0 j (t�1) + xi jt � 1  �ii0 jt 8i, i0 , j,8t > 0 (9)
xi jt 2 {0, 1} 8i, j, t (10)

�ii0 jt 2 {0, 1} 8i, i
0
, j, t (11)

zii0 j j0t 2 {0, 1} 8i, j, i
0
, j
0
, t (12)

�e decision variables xi jt are de�ned as follows: xi jt = 1,
if component Cj is assigned to server Si in time slot t ; and
0 otherwise. We de�ne a binary variable �ii0 jt which is 1,
if both xi0 j (t�1) and xi jt are 1; and 0 otherwise. �is means
that for component Cj in time slot t , if relocation from server
Si0 to server Si happens, then �ii0 jt = 1. We also de�ne
another binary variable zii0 j j0t which is 1, if both variables
xi jt and xi0 j0t are 1; and 0 otherwise. �e objective function
is the sum of the four types of costs that we de�ned above.
Constraints (6) ensure that in each time slot each component is
assigned to exactly one server. Constraints (7) guarantee that
in each time slot, each server is used by at most one component.
Constraints (8) and (9) de�ne zii0 j j0t and �ii0 jt , respectively.
Constraints (10)-(12) represent the integrality requirements
for the decision variables. �e optimal solution obtained by
solving the MCAPP-MILP will be used in the experimental
results section as a lower bound for the solution obtained by
the proposed online heuristic algorithm for solving MCAPP.

Table 1: Notation

m Number of servers
n Number of components
T �e time required to complete the execution

of application C in the system
�i jt Cost of running component Cj on server Si

in time slot t
cit Cost of processing one unit of load on server Si
pjt Processing requirement of component Cj in

time slot t
�ii0 jt Cost of relocating component Cj from server Si

to server Si0 in time slot t
lii0 t Distance between servers Si and Si0 in time slot t
qjt Size of component Cj in time slot t
rt Cost of transferring one unit of data over a unit

of distance in time slot t
�i jt Communication cost between component Cj

(assigned to server Si ) and the user in time slot t
dit Distance between server Si and the user in

time slot t
hjt Size of data that needs to be transferred between

component Cj and the user in time slot t
�ii0 j j0 t Communication cost between components Cj

and Cj0 that are located on servers Si and Si0 ,
respectively, in time slot t

�j j0 t Size of data that needs to be transferred between
components Cj and Cj0 in time slot t

4 AN ONLINE ALGORITHM FOR THE
MULTI-COMPONENT APPLICATION
PLACEMENT PROBLEM

In this section, we consider the online version of MCAPP and
design a heuristic algorithm to solve it. In the online version
of MCAPP the values of the cost parameters introduced in
the previous section may change every time slot and are not
known a priori. We assume that at the end of every time slot
the values of the parameters for the next slot are known and
the proposed algorithm determines the allocation for the next
time slot based on those new values.

�e main design idea of the algorithm is to �rst ignore the
communication costs between the components (i.e., �ii0 j j0t =
0) and determine the minimum cost assignment of the compo-
nents to servers using the Hungarian algorithm [11]. �e Hun-
garian algorithm is a polynomial time algorithm that solves
the assignment problem optimally. �e algorithm has as input
the weights �i j of the edges of the bipartite graph in which one
partition is composed of vertices corresponding to the servers,
and the other composed of vertices corresponding to the ap-
plication components. �e algorithm �nds a perfect matching
that gives the minimum cost assignment of components to
servers. Once the assignment is determined, the algorithm
takes into account the communication costs between the com-
ponents, �ii0 j j0t and performs a local search procedure that
obtains the �nal solution to MCAPP.

As was mentioned above, when there is no inter-component
communication, in each time slot the problem can be viewed as
a matching problem. In the �rst time slot (t = 0), the problem
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Figure 1: Matching components to servers (in time
slots t > 0).

is to match components to servers, where each assignment of
component Cj to server Si has a speci�c cost given by:

�i j = �i j0 + �i j0 (13)

�e relocation cost is not considered in the �rst time slot,
since �ik jt = 0. In the next time slots (t > 0), the problem
is to reassign components to servers taking users’ location
dynamics and other mentioned factors into account. In other
words, the algorithm must decide whether a component stays
on the current server or migrates to another one (see Figure 1).
�e cost of assigning component Cj to server Si must include
the relocation cost and thus, it is given by:

�i j = �i jt + �i jt + �ik jt (14)

where k is the location of component j in time slot t � 1.
�e proposed online algorithm, called MCAPP-IM (where

IM stands for Iterative Matching), is given in Algorithm 1. �e
algorithm is executed in each time slot t , until the application
completes its execution. �e input to the algorithm in time
slot t consists of the four cost parameters, �i jt , �ik jt , �i jt ,
and �ii0 j j0t , and a vector Ä specifying the current assignment
of components to servers. Vector Ä indicates the location of
each component (i.e., �j = i , if component Cj is assigned to
server Si ). To make it easy to describe the algorithms we use
the following notation: � t is the array of costs of executing
components on servers; �t is the array of communication costs
between user and components; �t is the array of relocation
costs; and � t is the array of inter-component communication
costs. �e values of these parameters are determined during
time slot t � 1 and are used as input to the algorithm in slot t .
�e variable cost is the cost of running the application under
the current assignment.

First, the algorithm computes the cost matrix � (lines 2-6)
and then, in line 7, it determines the optimal assignment of the
components to servers by calling the functionHUNGARIAN(�).
�is function implements a variant of the Hungarian method
algorithm and takes as input the cost � and returns the assign-
ment as the vector Ä. Since the Hungarian algorithm is well
known we will not describe it here, but we refer the reader to
Kuhn [11]. �e entry �i j , i = 1, . . . ,m; j = 1, . . . ,n, of the cost
matrix, represents the cost of assigning componentCj to server
Si without considering the cost of communication between
the components. Since this cost is not considered, the Hungar-
ian algorithms is able to determine the optimal assignment of
components to servers. �is optimal assignment is not a solu-
tion for the MCAPP problem, it is an optimal assignment for
theMCAPP with zero costs for the communication between

Algorithm 1 MCAPP-IM Algorithm
{Executed every time slot t }

Input: � t : costs of running components on servers
Input: �t : costs of comm. between user & components
Input: �t : relocation costs
Input: � t : inter-component communication costs
Input: Ä: current assignment of components to servers
1: cost  0
2: for i = 1, . . . ,m do
3: for j = 1, . . . ,n do
4: �i j  �i jt + �i jt + �i�j jt
5: end for
6: end for
7: Ä  HUNGARIAN(�)
8: for j = 1, . . . ,n do
9: cost  cost + ��j j
10: end for
11: (Ä, cost )  L-SEARCH(Ä,� t , �, cost )
Output: (Ä, cost )

components (i.e., �ii0j j0t = 0). In lines 8-10, the algorithm
computes the total cost of the new assignment determined by
the Hungarian algorithm. Next, in line 11, the algorithm calls
the local search algorithm, L-SEARCH, that takes into account
the cost of communication between components and �nds a
solution for theMCAPP problem. For the �rst time slot (t = 0)
the cost of relocation is zero (i.e., �ik jt = 0) and thus, it does
not contribute to the costs determined in lines 2-6.

�e local search algorithm, L-SEARCH, is given in Algo-
rithm 2. �e input to the algorithm consists of: Ä, the vector
specifying the current assignment obtained by the Hungarian
algorithm; � t , the array of inter-component communication
costs; the cost matrix �; and cost , the cost of the current assign-
ment. First, the algorithm computes the total inter-component
communication cost �j of each component Cj for the cur-
rent time slot (lines 4-9). �en, in line 10, it determines the
index of the bo�leneck component, denoted by b. �e bo�le-
neck component is the component that has the maximum total
inter-component communication cost. A�er that, the algo-
rithm executes a for loop (lines 11-26) in which it tries to �nd a
lower total cost assignment by swapping the component that
is currently placed on server Si with the bo�leneck component.
�is is done by obtaining the index of the component assigned
to server Si denoted by k and then calling the function SWAP-
COMPONENTS(b, k). �is function swaps the components
Cb andCk that is, assigns the bo�leneck component to Si and
component Ck to the server in which Cb resided. If there is
no component Ck on server Si , then Cb is assigned to Si and
the server on which Cb resided is marked as available. �e
function outputs a new assignment vector Ä. A�er this, in
lines 15-20, the algorithm computes new cost , the total cost of
the system under the new assignment. If there is an improve-
ment in the cost, the algorithm updates the total cost, cost ,
otherwise it restores the previous assignment by calling the
SWAP-COMPONENTS function (lines 21-25). �e algorithm
continues this procedure as long as there is an improvement
in the solution.
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Algorithm 2 L-SEARCH Algorithm
Input: Ä: current assignment of components to servers
Input: � t : inter-component communication costs
Input: �: cost matrix
Input: cost : total cost of current assignment
1: pre� cost  cost
2: stop  f alse
3: while not stop do
4: for j = 1, . . . ,n do
5: �j  0
6: for j 0 = 1, . . . ,n do
7: �j  �j + ��j ,�j0 j j

0t

8: end for
9: end for
10: b  argmaxj {�j }
11: for i = 1, . . . ,m do
12: new cost  0
13: k  index of the component assigned to server Si
14: Ä  SWAP-COMPONENTS(b, k)
15: for j = 1, . . . ,n do
16: new cost  new cost + ��j j
17: for j 0 = 1, . . . ,n do
18: new cost  new cost + ��j�j0 j j

0t
19: end for
20: end for
21: if new cost < cost then
22: cost  new cost
23: else
24: Ä  SWAP-COMPONENTS(k , b)
25: end if
26: end for
27: if cost < pre� cost then
28: pre� cost  cost
29: else
30: stop  true
31: end if
32: end while
Output: Ä
Output: cost

We now investigate the time complexity of the proposed
algorithm. �e time complexity of the Hungarian algorithm
is O (max (m3,n3)). Because each component is not chosen as
bo�leneck more than once, the time complexity of L-SEARCH
is O (mn3). �erefore, the time complexity of MCAPP-IM is
O (max (m3,n3) +mn3) = O (m3 +mn3).

5 EXPERIMENTAL RESULTS
We perform extensive experiments in order to investigate the
properties of the proposed algorithm, MCAPP-IM. We com-
pare its performance against that of the optimal solution for
the o�ine version of MCAPP problem, and that of another on-
line algorithm. In the following, we describe the experimental
setup and analyze the experimental results.

Table 2: Simulation parameters

Distribution
Param. communication-intensive computation-intensive
cit N (µit , 0.2µit ), N (µit , 0.2µit ),

µit ⇠ U [1, 10] µit ⇠ U [1, 10]
pjt N (µ jt , 0.2µ jt ), N (µ jt , 0.2µ jt ),

µ jt ⇠ U [0, 10] µ jt ⇠ U [1, 107]
qjt U [10, 40] U [10, 40]
hjt U [1, 20] U [1, 20]
�j j0 t U [1, 107] U [1, 10]
rt U [0, 1] U [0, 1]

5.1 Experimental Setup
Because the development of MEC is still in the early stages,
there are no MEC workload traces that are publicly available.
�erefore, for our experiments, we have to rely on synthet-
ically generated instances for the MCAPP problem. In the
following, we describe howwe generate the problem instances
that drive our simulation experiments and describe the exper-
imental setup.

We consider a time slo�ed system in which the locations
of users in the network may change from one time slot to
another, but do not change during one time slot. �e users and
servers are located within a two-dimensional grid of 150⇥ 150
cells. Initially, a user can be in any cell of the grid network and
its location is drawn randomly from a uniform distribution
over the locations of the grid. In our se�ing, we assume that
the mobility of users is based on the random walk model [5]
in a two-dimensional space, which is an approximation of
real world mobility traces. In every new time slot, a user
can stay in its place or move into any of neighboring cells
with equal probability. �e servers are located within the
same two-dimensional grid network and the coordinates of
their positions are drawn from a uniform distribution. �e
distance between servers and between servers and users, is
the Manha�an distance (as de�ned in Section 3).

We generate several problem instances with di�erent val-
ues for the number of components of the application (n), the
number of servers in the network (m), and the total running
time of the mobile application (T ). �e number of components
for each application ranges from 4 to 180, while the number of
servers ranges from 10 to 200. �e reason for choosing these
ranges is that in practice the number of components of an
average application rarely exceeds 20 and most likely is on
the lower part of the range considered here.

To generate the cost parameters de�ned in Section 3 we
take into account the type of applications we consider. Since
the determinant factors in the performance of any algorithm
for solving MCAPP are the computation cost and the inter-
component communication cost, we decided to generate the
parameters for the instances we consider according to a metric
called communication to computation ratio (CCR). �is metric
is de�ned as the ratio of the average communication cost per
component and the average execution cost per component.

Table 2 shows the type of distributions used to generate
the parameters characterizing the problem instances used in
our simulation experiments. We consider di�erent ranges
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for the distribution for two classes of applications: a typical
communication-intensive application and a typical computation-
intensive application. All the cost parameters for these two
types of applications are the same, except for parameters pjt
and �j j0t . �ese parameters indicate the computation/comm-
unication intensiveness of the application. In Table 2, we
denote by U [x ,�], the uniform distribution within interval
[x ,�], and by N (µ,� ), the normal distribution with mean µ
and variance � .

We compare the performance of our algorithm MCAPP-IM
with that of another algorithm calledMATCH and with that of
the optimal solution obtained by solvingMCAPP-MILP.�e
MATCH algorithm implements a variant of the Hungarian
algorithm [11] and does not take into account the communi-
cation among components when making the placement deci-
sions. We compare with this algorithm in order to investigate
the improvement in the quality of the solution due to consid-
ering the communication time among components in the local
search phase of MCAPP-IM.

For each type of instance, we execute MCAPP-IM and
MATCH algorithms for ten random instances. �e perfor-
mance of the algorithms is evaluated by computing the actual
competitive ratio (CR) which is de�ned as the ratio between
the value of the solution obtained by an online algorithm (V )
and that of the optimal solution for the o�ine problem (V ⇤):

CR =
V

V ⇤
(15)

�e optimal solution is obtained by solving theMCAPP-MILP
program with the CPLEX solver.

�eMCAPP-IM andMATCH algorithms are implemented
in C++ and the experiments are conducted on an Intel 1.6GHz
Core i5 with 8 GB RAM system. For solving MCAPP-MILP
we use the CPLEX 12 solver provided by IBM ILOG CPLEX
optimization studio for academics initiative [1].

5.2 Analysis of Results
We �rst investigate the performance of theMCAPP-IM algo-
rithm in terms of actual competitive ratio and execution time
on a set of small size instances consisting ofm = 10 servers
and n = 4 components. We chose this type of instances in
order to be able to solve them optimally using CPLEX and
compare the performance of our algorithm with that of the
optimal solution. In Table 3, we give the communication to
computation ratios, the competitive ratios, and the execution
times obtained by MCAPP-IM, MATCH, and CPLEX on those
instances. We also considered six values for T , the number
of time slots needed to complete the application under con-
sideration. We group the instances according to their CCR,
into seven classes. Starting from the top of the table we list
the computation-intensive instances and ending at the bo�om
of the table with the communication-intensive ones. CPLEX
was not able to solve some of the communication-intensive
instances in feasible time, and thus, we were not able to de-
termine the competitive ratios for MCAPP-IM and MATCH
algorithms. In those cases we le� the entries in the table empty.

Table 3: Competitive ratios and execution times
(MCAPP withm = 10 servers, n = 4 components)

Competitive Ratio Execution time (msec)
CCR T MCAPP-IM MATCH MCAPP-IM MATCH CPLEX
0.002 1 1 1.00001 0.064 0.021 70.8
0.005 2 1 1 0.085 0.037 115.2
0.002 4 1 1 0.132 0.063 185.7
0.005 8 1 1.00001 0.221 0.120 303.3
0.008 16 1 1 0.389 0.180 575.7
0.023 32 1 1 0.765 0.380 1368.7
0.019 1 1.00015 1.00067 0.095 0.090 75.0
0.041 2 1 1.00001 0.094 0.048 100.3
0.052 4 1.00011 1.000012 0.135 0.054 205.0
0.081 8 1.00005 1.00005 0.230 0.090 348.0
0.085 16 1.00012 1.000013 0.456 0.216 657.4
0.051 32 1.00002 1.00003 0.734 0.379 1369.0
0.13 1 1.01 1.0113 0.036 0.015 65.2
0.16 2 1 1.003 0.103 0.040 181.0
0.12 4 1.001 1.003 0.137 0.050 1365.7
0.14 8 1.001 1.0004 0.352 0.012 1809.6
0.13 16 1.001 1.002 0.307 0.012 5281.3
0.14 32 1.001 1.005 0.140 0.080 5669.3
1.10 1 1.10 1.199 0.057 0.015 280.7
0.80 2 1.08 1.124 0.183 0.110 2182.3
1.02 4 1.07 1.081 0.153 0.061 6763.8
1.21 8 1.15 1.254 0.258 0.125 10295.4
0.70 16 1.03 1.061 0.469 0.183 566251.0
1.41 32 1.17 1.217 0.971 0.430 5745128.0
11.29 1 1.38 1.570 0.053 0.018 417.3
13.94 2 1.73 1.920 0.106 0.033 8840.4
17.80 4 1.72 1.926 0.561 0.155 9101456.0
12.80 8 - - 0.323 0.119 > 3 hours
12.11 16 - - 0.588 0.210 > 3 hours
11.81 32 - - 1.310 0.442 > 3 hours
128.2 1 1.47 2.381 0.087 0.052 549.7
172.8 2 1.41 2.002 0.105 0.054 6216.0
90.1 4 1.65 2.145 0.363 0.070 292797.0
141.6 8 - - 0.451 0.180 > 3 hours
116.6 16 - - 0.680 0.230 > 3 hours
138.1 32 - - 1.132 0.416 > 3 hours
1241 1 1.9 4.712 0.150 0.050 974.9
1028 2 1.7 2.431 0.223 0.070 25814.2
950 4 1.81 2.968 0.347 0.085 76330.1
981 8 - - 0.466 0.146 > 3 hours
931 16 - - 0.794 0.235 > 3 hours
1615 32 - - 1.253 0.445 > 3 hours

We select instances of three types from this table, one
computation-intensive instance, one computation-communi-
cation balanced instance, and one communication-intensive
instance, and perform a detailed analysis of the results. In
Figure 2, we plot the total execution times (i.e., the sum of
the execution times in all time slots) obtained by MCAPP-IM,
MATCH, and CPLEX on those instances for di�erent values
ofT using a logarithmic scale. �e execution time of CPLEX is
several orders of magnitude higher than the execution times
of bothMCAPP-IM andMATCH algorithms for all three types
of instances. For the last two types of instances and larger
values of T , CPLEX was not able to �nd the optimal solution
in feasible time, and therefore there are no bars in the plots
corresponding to these cases. �e execution times of our pro-
posed algorithm, MCAPP-IM, are under 1 millisecond in all
cases making it very suitable for deployment in real MEC sys-
tems. We observe a slight increase of the execution time of
MCAPP-IM with the increase in the number of time slots, but
we believe that this increase is reasonable and that it will not
make our algorithm a signi�cant contributor to the overhead
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Figure 2: Execution time vs. number of time slots (a) Computation-intensive case; (b) Balanced communication-
computation case; (c) Communication-intensive case. (*CPLEX was not able to determine the solution for T = 16 and 32 in (b), and for
T = 8, 16, and 32 in (c) in feasible time, and thus, there are no bars in the plots for those cases)
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Figure 3: Competitive ratio vs. number of time slots (a) Computation-intensive case; (b) Balanced communication-
computation case; (c) Communication-intensive case. (*CPLEX was not able to determine the solution for T = 16 and 32 in (b), and for
T = 8, 16 and 32 in (c) in feasible time, and thus, there are no bars in the plots for those cases)

of placing the application components on edge servers. �e
MATCH algorithm obtains a slightly lower execution time
than MCAPP-IM but as we will show next, this small exe-
cution time is obtained at the expense of not being able to
provide near optimal solutions to the problem. �e reason
behind this, is that MATCH does not take into account the
communication between components when determining the
placement, requiring less time than MCAPP-IM.

In Figure 3, we plot the actual competitive ratios obtained
by MCAPP-IM, MATCH, and CPLEX. Since CPLEX obtains
the optimal solution, we plot its competitive ratio as 1. In the
case of computation-intensive instances (Figure 3a) the actual
competitive ratios obtained byMCAPP-IM andMATCH are
very close to 1, thus both algorithms obtain optimal solutions
or solutions that are very close to the optimal. If there is al-
most no communication among the components, MCAPP-IM
behaves similarly toMATCH, that is the local search step is not
actually able to improve the solution beyond that obtained by
matching. In the case of communication-intensive instances
(Figure 3c)MCAPP-IM obtains much be�er competitive ratios
than MATCH for all instances. �at means that MCAPP-IM is
able to obtain solutions that are closer to the optimal solution
than those obtained by MATCH. As an example for T = 4 the
competitive ratio of MCAPP-IM is 1.81 while that of MATCH

is 2.968. Another important observation is that the actual com-
petitive ratios obtained byMCAPP-IM are less than 2 for all
the communication-intensive instances considered here, that
is, they are independent on the number of slots we considered.

We next analyze the e�ect of the number of time slots,
number of servers, and number of components on the per-
formance of communication-intensive large-scale instances
of the MCAPP problem. Since CPLEX is not feasible to use
for solving such large instances, we will not compare the per-
formance of our algorithm against the performance of the
optimal solution obtained by CPLEX. Instead we will compare
the performance of our algorithm against that of MATCH. In
order to do this we use a new metric called the performance
ratio de�ned as the ratio of the total cost obtained by MATCH
and the total cost obtained by MCAPP-IM.

First, we investigate the e�ect of the number of time slots
required to complete the application on the performance of
MCAPP-IM. We consider large instances withm = 100 servers
and n = 50 components and several values for the number of
time slots ranging from 20 to 200. In Figure 4a, we plot the
average execution time per time slot obtained by MCAPP-IM
and MATCH. �is allows us to determine the amount of time
spent by the local search phase of MCAPP-IM in each time slot
(sinceMATCH does not perform local search to improve the
solution). We can observe that the execution time for the local
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Figure 4: �e e�ect of the number of time slots. (communication-intensive case,m = 100 servers, n = 50 components):
(a) Average execution time per time slot; (b) Performance ratio.
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Figure 5: �e e�ect of the number of servers (communication-intensive case, n = 40 components, T = 20 time slots):
(a) Average execution time per time slot; (b) Performance ratio.

search phase is about 60 percent of the total execution time of
MCAPP-IM per time slot. MATCH has a lower execution time
per time slot thanMCAPP-IM regardless of the total number of
time slots. Another observation is that the execution times per
time slot of bothMCAPP-IM andMATCH are insensitive to
the number of time slots. Given that in practice, the time slots
are in the order of minutes, the execution times of MCAPP-IM
per time slot are within reasonable ranges (13-16 milliseconds)
and they do not contribute signi�cantly to the total overhead
of component placement in MEC. In Figure 4b, we plot the
performance ratio of the two algorithms, MCAPP-IM and
MATCH. In order to facilitate the comparison, we plot the
performance ratio of MCAPP-IM which is 1, since the ratio
is de�ned relative to the total cost obtained by MCAPP-IM.
MCAPP-IM outperforms MATCH by obtaining solutions with
smaller total cost. �e reduction of the total cost obtained by
MCAPP-IM is signi�cant, ranging from 15 to 20 percent. �is
reduction in cost is consistent across the full range of values
for the number of slots considered here.

Next, we investigate the e�ect of the number of servers on
the performance of MCAPP-IM. We consider large instances
with a �xed number of components (n = 40) and �xed num-
ber of slots (T = 20), and several values for the number of
servers, ranging from 60 to 200. In Figure 5a, we plot the aver-
age execution time per time slot obtained by MCAPP-IM and

MATCH. As expected, the average execution time per time
slot of MCAPP-IM is sensitive to the number of servers in the
system. �is is because of the cubic growth in terms ofm of the
running time of the algorithm. For example form = 60, the av-
erage execution time is around 5 milliseconds and form = 200,
the average execution time is around 197 milliseconds. Similar
behavior is observed in the case of MATCH. For example, for
m = 60, the average execution time is about 2 milliseconds
and form = 200, it is about 36 milliseconds. �erefore, both
algorithms exhibit similar trends with respect to the execution
time per time slot when the number of servers increases. In
Figure 5b, we plot the performance ratio of the two algorithms
MCAPP-IM andMATCH.MCAPP-IM obtains be�er solutions
with total cost 12 to 20 percent lower than MATCH for all the
number of servers. Also, the performance ratio of MATCH in-
creases as the number of servers increases, which means that
MCAPP-IM algorithm obtains be�er solutions for instances
with a large number of servers.

Finally, we investigate the e�ect of the number of compo-
nents on the performance of MCAPP-IM. We consider large
instances with a �xed number of servers (m = 200) and a
�xed number of time slots (T = 20) and several values for the
number of components, ranging from 20 to 180. In Figure 6a,
we plot the average execution time per time slot obtained by
MCAPP-IM and MATCH. �e average execution time of both
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Figure 6: �e e�ect of the number of components (communication-intensive case,m = 200 servers, T = 20 time slots):
(a) Average execution time per time slot; (b) Performance ratio.

algorithms increases with the number of components. For
example for n = 20, the average average execution time of
MCAPP-IM is about 145 milliseconds and for n = 180, it is
about 17 seconds. �ese instances with large number of com-
ponents are not expected to be encountered in practice, but
we still consider them here to investigate the scalability of the
algorithms. �e running time of MATCH is much lower but
the algorithm obtains worst solutions, that is, solutions with
higher total cost. In Figure 6b, we plot the performance ratio of
the two algorithms,MCAPP-IM andMATCH. Again,MCAPP-
IM outperforms MATCH for all the number of components,
but the performance ratio decreases with the increase in the
number of components. In fact, when the number of compo-
nents is much less than the number of servers, the local search
procedure employed byMCAPP-IM explores more alternative
placements to �nd the one that improves the solution.

�e experimental results show that MCAPP-IM obtains
solutions that are very close to the optimal and requires very
low execution time per slot for reasonably large instances. For
the average size instances, the ones we expect to encounter
in practice, the proposed algorithm performs very well with
respect to both the quality of the solutions and the execution
time per time slot.

6 CONCLUSION
In this paper, we addressed the problem of placement of multi-
component applications in MEC. First, we formulated the of-
�ine version of the problem as a Mixed Integer Linear Program
(MILP) and then developed a heuristic algorithm for solving
the online version of the problem. �e algorithm is based
on an iterative matching process followed by a locals search
phase in which the solution quality is improved. We performed
extensive experiments to investigate the performance of the
proposed algorithm. �e results of these experiments indicated
that the proposed algorithm obtains very good performance
and requires very low execution time.

For future work, we plan to extend our algorithm to handle
more general cases of the placement problem in which several
applications of a user need to o�oad their components to
edge servers. Another avenue for future research is to develop

placement algorithms that take into account both the users’
and providers’ incentives when making placement decisions.
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