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Abstract—The surge in demand for computing resources in
data centers coupled with the rise of environmental concerns
has motivated cloud providers to reduce carbon emission due
to computational energy consumption. An opportunity lies in
the fluctuating availability of renewable energy over time and
the variability of power sources over grid regions, leading to
variations in space and time in carbon intensity. Exploiting
such variations, this paper introduces Caspian, a carbon-aware
workload scheduler in multi-cluster Kubernetes environments,
which aims at reducing the carbon footprint (CFP) due to
executing workloads, while satisfying Quality of Service (QoS)
requirements. Caspian cooperates with a multi-cluster manage-
ment platform to apply scheduling and placement decisions over
distributed clusters. We present efficient optimization algorithms
to achieve these goals. Further, we describe an implementation of
Caspian, integrated with Multi Cluster App Dispatcher (MCAD),
a multi-cluster management platform which handles queuing
and dispatching of workloads over multiple clusters. Our ex-
perimental results show that Caspian effectively reduces CFP
with reasonable QoS, compared to a baseline scheduler which
only satisfies the QoS of workloads. Specifically, Caspian reduces
CFP by about 33%, with about 98% of workloads completing
at an average fraction of 0.6 of their deadline.

Index Terms—cloud sustainability, green computing, Kuber-
netes, multi-cluster management, placement, scheduling.

I. INTRODUCTION

Over the past few years, due to the surge in using cloud
computing for executing compute intensive jobs, such as ar-
tificial intelligence and machine learning (AI/ML) workloads,
data centers have contributed to the production of a significant
CFP compared to some other industries such as the airline
industry. Data centers consume approximately 1–2% of global
electricity production [13], resulting in an estimated 2.5–3.7%
of global carbon emission [7]. This trend will most likely con-
tinue in the next decade, leading to a concerning contribution
to global warming.

Many technology companies have invested in renewable
energy to lower the energy cost and the environmental impact
of their services [11], [12]. These companies either gener-
ate their own renewable energy onsite or directly supply it
from renewable power plants. However, achieving carbon-free
computing still remains challenging due to the uncertain and
variable availability of renewable energy sources such as solar
and wind. One potential solution to tackle this variability is to
store energy. However, there are concerns about using batteries
for renewable energy storage such as cost and their impact on

the environment. Another approach is to dynamically manage
the execution of workloads to match the low-carbon energy
supply. This approach requires revisiting the design of resource
management platforms in data centers as they mainly focus on
optimizing the trade off between performance, utilization, and
energy consumption [14].

In recent years, an extensive research has been conducted on
carbon-aware resource management in cloud computing sys-
tems. These studies address dynamic workload management
by exploiting temporal and/or spatial variability of carbon
intensity of electricity of data centers, as well as taking
advantage of the fact that many types of batch workloads,
such as AI/ML training jobs, have a substantial temporal and
geographical flexibility. For example, Google traces indicate
that a high percentage of jobs submitted to the Borg scheduler
have a low priority and fall in the free and best-effort-batch
tiers with weak Service Level Agreements (SLAs) [18]. Simi-
lar characteristics are observed for jobs in Meta. For example,
in Meta, about 87% of offline data processing workloads have
completion time Service Level Objectives (SLOs) more than
four hours, with the majority having 24-hour SLOs. This offers
considerable flexibility for adjusting the schedule of workloads
based on the availability of low carbon energy [1].

Enabling temporal and spatial shifting of workloads requires
the deployment of dynamic scheduling algorithms, which take
real time data about power consumption, carbon intensity of
electricity, and workload characteristics and make efficient
scheduling and placement decisions. A body of research has
considered temporal shifting of workloads employing opti-
mization techniques such as linear programming, matching,
and greedy techniques [2], [4], [8], [10], [15]. These studies
considered various performance metrics in their objective
functions such as electricity price, carbon price, carbon-
intensity of grid energy, and QoS. In addition to temporal shift-
ing, many studies considered the spatial workload placement
among geographically distributed data centers [3], [16], [19],
as well as distributed web services [17]. These efforts opti-
mize various objective functions including minimizing carbon
footprint, and/or maximizing the profit of cloud provider while
guaranteeing QoS of workloads. They employed optimization
techniques such as linear programming, distributed algorithms,
reinforcement learning, and federated learning.

Combining temporal and spatial workload shifting, we



Fig. 1: A high level architecture of Caspian in a multi-cluster
environment.

introduce Caspian, a carbon-aware workload scheduler in
multi-cluster Kubernetes1 environments. In summary, our main
contributions are as follows.

• We introduce a multi-objective optimization problem with
the aim of: (1) minimizing carbon emission by running
workload when and where low-carbon energy is available;
(2) minimizing the average lateness of workloads; and (3)
minimizing the average completion time of workloads.

• We design efficient algorithms to address the complexity
of the optimization problem and deploy them in Caspian.

• We design a framework in which Caspian collaborates
with multi-cluster management platforms to apply its
decision in the target clusters.

• We implement Caspian and deploy it in a running Ku-
bernetes multi-cluster environment.

• We demonstrate that, using real-world carbon intensity
data and workloads with various characteristics, Caspian
achieves high carbon reduction compared to a baseline
scheduler which only considers the QoS of workloads.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Caspian is a batch scheduler in a multi-cluster Kubernetes
environment which decides when and where workloads are
executed, based on the sustainability aspects of the clusters
such as carbon intensity of energy sources and server power
efficiency. Figure 1 shows a high level architecture of Caspian
and its interactions in a multi-cluster environment. We con-
sider a hub-spoke configuration consisting of a master (hub)
cluster, as a multi-cluster control plane, and several worker
(spoke) clusters, as target clusters managed by the hub to run
workloads. Caspian, as a scheduling and placement controller,
lives in the hub, interacting with a multi-cluster manager which
handles queuing, dispatching, and execution of workloads in
the spoke clusters.

Caspian consists of two main components: a carbon tracker
and a scheduler. The carbon tracker (1) gets the geographical
location of the spoke clusters from the multi-cluster manager
and (2) fetches periodically the predicted values of carbon

1https://kubernetes.io

intensity for those locations from external sources, such as
a carbon intensity service. The scheduler runs periodically.
At the beginning of each period, it takes the information of
spoke clusters (such as carbon intensity, power efficiency, and
resource availability), as well as characteristics of workloads
(such as run time, resource requirement, and deadline), and
determines the best scheduling and placement for workloads
using an optimizer. Once these decisions are made, Caspian
updates the scheduling specifications of workloads’ Kuber-
netes manifest files, notifying the multi-cluster manager about
the scheduling decisions for the next time slot. Next, the
multi-cluster manager applies these decisions in the destination
clusters and updates the status of workloads accordingly. More
details about the multi-cluster manager and its interactions
with Caspian is provided in Section IV.

A. Problem statement

This section describes the optimization problem that is
addressed by the optimizer in Caspian. The multi-cluster
environment considered here consists of a hub cluster and M
spoke clusters. We consider a discrete time slotted system in
which the decisions are made periodically, based on the status
of the system, over a time horizon of T time slots.

We denote by N the set of workloads. Each workload i is
represented by the tuple (aij , ri, li, di). Attribute aij ∈ {0, 1}
is the policy of workload i for cluster j; it is zero if workload i
is not allowed to be executed on cluster j; and one otherwise.
Attribute ri is the required amount of compute resources, li is
the run time of execution of workload i, and di is the deadline.
In this formulation, we consider a single type of compute
resource, but the formulation could be easily extended to
multiple types. Here, meeting the deadline of a workload is a
soft constraint, i.e., the optimizer is not forced to schedule the
workload before its deadline; but violating the deadline has an
impact on the value of the objective function.

We denote the set of spoke clusters by M. Each cluster j is
represented by the tuple (Ct

j , I
t
j , ρj), where Ct

j is the available
computing resources and Itj is the carbon intensity during
time slot t in cluster j. Attribute ρj is an estimate of power
efficiency in cluster j. We assume that power consumption is
linear2 in resource utilization for all clusters [6]. The dynamic
power consumption is estimated as the product of resource uti-
lization and the constant factor ρj . Thus, the carbon emission
associated with the dynamic power consumption in cluster j
in time slot t is the product of the resource utilization, power
consumption factor ρj , and carbon intensity Itj . Further, we
assume that job runtime is invariant to the cluster, as it may
request specific hardware.

We address the problem of Multi-Objective Scheduling and
Placement (MOSP) of workloads over multiple geographically
distributed clusters. The decision variable is matrix x of binary
variables xt

ij , where xt
ij is one if workload i starts at time slot t

in cluster j; and zero otherwise. The primary goal of MOSP

2This is asymptotically true for large data centers and concave power
profiles, as local energy-aware schedulers would tend to pack servers.



is to minimize the CFP due to the execution of workloads. To
avoid infeasibility due to the limited resources, we do not force
the optimizer to schedule all workloads; rather we encourage
the optimizer to maximize resource utilization when and where
low carbon energy is available. Thus, our first objective is to
maximize Z1(x) given by,

Z1(x) =
∑
j∈M

∑
t∈T

∑
i∈N

∑
t′∈∆t

i

xt′

ij · ri

Ct
j · Itj · ρj

. (1)

In this formulation, quantity (
∑
i∈N

∑
t′∈∆t

i

xt′

ij · ri)/Ct
j represents

the resource utilization at time slot t in cluster j. The resource
utilization of a cluster in a particular time slot is calculated
as the ratio of resource requirement of all workloads running
during the time slot over cluster capacity. Workload i is
running on cluster j during time slot t if it is started in any
time slots in the interval ∆t

i = {t− li + 1, ..., t}.
A second objective is concerned with the QoS of workloads.

Here, the goal is to schedule workloads before their deadlines.
However, due to the limited compute resources, some work-
loads may not meet their deadlines. To handle such cases, and
also to avoid infeasible solutions, we assume that meeting
deadlines is a soft constraint. Thus, instead of guaranteeing
that all workloads are scheduled before their deadlines, we
attempt to schedule as many workloads as possible while min-
imizing the sum of the lateness of workloads, or equivalently
maximizing Z2(x) given by,

Z2(x) =
∑
i∈N

∑
j∈M

∑
t∈T

xt
ij

γ(i, t)
, (2)

where γ(i, t) is a penalty function for lateness. This penalty
function discourages the decision maker to schedule a work-
load after its deadline. A simple definition of the penalty
function could be γ(i, t) = max(1, li + t − di), which
monotonically decreases the objective value with the increase
of deviation of completion time of workload from its deadline.

A third objective controls the completion time of work-
loads. Scheduling the current workloads while not considering
upcoming workloads in the future may result in inefficient
utilization of compute resources. Let us consider a scenario in
which the current workloads have extended deadlines. Under
objective functions Z1 and Z2, the optimizer may decide to
postpone the execution of workloads and schedule them later
when low carbon energy is available, while a heavy demand
may also arrive to the system in the future. This may cause
some future workloads to miss their deadlines. One approach
to handle such cases is to schedule the current workloads
while reserving resources for the predicted future load [3].
This approach requires the prediction of future load. In this
paper, we assume that either the prediction of future load is not
available or the future load is hard to predict. Consequently,
we define a third objective function, Z3(x), which controls the
completion time of workloads and does not let workloads be
executed very late, even if they still have time ahead of their

deadlines,

Z3(x) =
∑
i∈N

∑
j∈M

∑
t∈T

xt
ij

λ(i, t)
, (3)

where λ(i, t) is the penalty function of completion time.
Given this penalty function, the decision maker is encour-
aged to schedule workloads as soon as possible. Here, we
simply consider the completion time as the penalty function,
i.e., λ(i, t) = t + li. This function may also be defined by
considering an estimation of arrival rate of future workloads.

Given objective functions Z1(x), Z2(x), and Z3(x), we
formulate the MOSP problem as an integer programming
problem.

max
x∈X

(Z1(x), Z2(x), Z3(x)) (4)

subject to:∑
i∈N

∑
t′∈∆t

i

xt′

ij · ri ≤ Ct
j ∀j ∈ M, t ∈ T , (5)

∑
j∈M

∑
t∈T

xt
ij ≤ 1 ∀i ∈ N , (6)

xt
ij ≤ aij ∀i ∈ N ,∀j ∈ M, t ∈ T , (7)

xt
ij ∈ {0, 1} ∀i ∈ N ,∀j ∈ M, t ∈ T , (8)

where X is the feasible set of decision matrices. Constraint (5)
guarantees that for each cluster j, the total amount of resources
allocation cannot exceed its available capacity. Constraints (6)-
(7) consider the policy of the workload for clusters and also
ensure that each workload is scheduled on a maximum of one
cluster. Constraint (8) represents the integrality requirements
for the decision variables.

B. Problem Complexity

The special case of MOSP with a single-objective function
maxZ1(x),x ∈ X , i.e., maximizing resource utilization when
and where low-carbon energy is available, is NP-hard [3]. This
implies that MOSP, with multiple objective functions is NP-
hard. Furthermore, solving problems with multiple objective
functions is not as straight forward as it is with single-
objective problems. In multi-objective optimization problems
with conflicting objectives, the goal is to find Pareto optimal
solutions; the solution that could not be dominated by another
feasible solution. It might be possible to obtain the Pareto
optimal solutions of the problem when there is a few number
of workloads in the system. But with a large number of
workloads it is practically impossible to solve the problem in
a reasonable amount of time. In the next section, we introduce
an efficient algorithm to solve MOSP in polynomial time.

III. CASPIAN ALGORITHMS

The scheduler determines the schedule time as well as the
target cluster for execution of workloads. The scheduler works
in a timely manner where the length of the interval between
its invocations is determined based on the characteristics of
workloads such as QoS requirement and the average execution
time of workloads. A high level description of the scheduler
algorithm is given in Algorithm 1. The input to the scheduler



Algorithm 1 Scheduler (λ)
1: while true do
2: (M,N )← getClusterAndWorkloadInfo()
3: y← optimizer(M,N )
4: for each i ∈ N do
5: if isValid(y[i]) then
6: setTarget(i, y[i])
7: else
8: suspend(i)
9: wait(λ)=0

is δ, the length of the interval between periods. At the
beginning of each period, the scheduler gets all available spoke
clusters as well as the workloads (Line 2) and saves their
characteristics in sets M and N , respectively. Then, it calls
the optimizer to find the best scheduling and placement for the
workloads (Line 3). The scheduler has two choices. It could
ask the optimizer to decide on the scheduling and placement
of (1) the queued workloads or (2) the running workloads,
by revisiting its previously made decisions, in addition to
the queued workloads. In this implementation, the scheduler
considers the second option and asks optimizer to decide about
all workloads in the system, those currently running in the
spoke clusters as well as workloads queued in the hub cluster.
The output of the optimizer is a vector y which indicates the
destination cluster for each workload. Here, yi = j means that
workload i is scheduled on cluster with index j and yi = −1
means that workload i is scheduled for a time period later
than the current time period. For workloads with a valid target
cluster index, the scheduler sets the target cluster field in the
scheduling specification of the workload Kubernetes manifest,
notifying the multi-cluster manager where to dispatch them.
For workloads that are not scheduled for the upcoming time
slot, the scheduler sets the sustainability gate in the scheduling
specification of the workload Kubernetes manifest, notifying
the multi-cluster manager to suspend them (Lines 4-8).

The optimizer solves the MOSP optimization problem with
three objectives: Z1(x), Z2(x), and Z3(x). Many techniques
for solving multi-objective optimization problems are based on
converting the original problem into a single objective prob-
lem [5], known as scalarization. Consequently, we construct a
single objective function by summing the individual objective
functions, each multiplied by a coefficient, as

Z(x) = ω̄1 · Z1(x) + ω̄2 · Z2(x) + ω̄3 · Z3(x),

where ω̄k is the normalized value of ωk, the preference value
for objective function Zk(x). Due to the inconsistent units
of the objective functions, normalization of the preferences
of objectives is necessary. Normalization plays a significant
role in achieving the optimal solutions with the given prefer-
ences for objectives. Several studies have focused on various
normalization methods [9]. However, the most efficient ap-
proaches consider normalizing by the magnitude of the optimal
values, where each optimal value is obtained by solving an
optimization problem with a single objective function. Since
it is not possible to find the optimal solution for each single
objective in a reasonable amount of time, we consider the LP
relaxation of each problem and obtain coefficient θk = 1/Z̄k,

Algorithm 2 Optimizer(M,N )
1: , θk ← LPSolver(Zk,M,N ) ∀k ∈ {1, 2, 3}
2: ω̄k ← ωk

θk
∀k ∈ {1, 2, 3}

3: Z(x)←
∑

k∈{1,2,3}
ω̄k · Zk(x)

4: x̄, ← LPSolver(Z,M,N})
5: xt

ij ← 0 ∀i ∈ N , j ∈M, t ∈ T
6: yi ← −1 ∀i ∈ N
7: bi ←

∑
j∈M

∑
t∈T

x̄t
ij ∀i ∈ N

8: Sort workloads in non-increasing order of bi.
9: for each i ∈ N do

10: (j∗, t∗)←Allocation(i,x, Z,M)
11: if isValid(j∗) then
12: xt∗

ij∗ ← 1
13: if t∗ == 1 then
14: yi ← j∗

15: Output: y =0

where Z̄k is the optimal objective value obtained by solving
the LP relaxation of the problem with the single objective Zk.
Even with this simplification, the scheduling and placement
problem is NP-hard and we need to find an efficient algorithm
that solves the problem in reasonable amount of time.

Algorithm 2 describes the optimizer. First, the optimizer
calls the LP-Solver to find the optimal LP solution with
each of the objective functions. The output of LPSolver is
the scheduling matrix and the objective value of the solution.
Here, since we are only interested in the objective values,
i.e., θ1, θ2, θ3, we do not save the scheduling matrix (Line 1).
Then, the optimizer, based on the LP solution formulates the
objective function Z(x) and calls the LPSolver; this time
to obtain LP solution for the MOSP problem with Z(x) as
the objective function (Lines 2-4). The solution is saved in
matrix x̄. Next, it builds a feasible solution x from the frac-
tional solution x̄. For this purpose, we initialize an allocation
matrix x to zero (Line 5). We also initialize target vector y to
save the target cluster for those workloads that are scheduled
for the upcoming time slot (Line 6). The algorithm sorts the
workloads in non-increasing order of their total allocation
value, bi, obtained by LPSolver (Lines 7-8). Then it chooses
an unallocated workload with the maximum value of bi and
calls allocation algorithm to find the best time slot and cluster
to fit the workload. If a valid spot (j∗, t∗) is found, the
algorithm updates the allocation matrix and target vector and
proceeds to the next candidate workload (Lines 9-14).

Algorithm 3 describes the allocation algorithm which finds
the best target cluster and best schedule time for each work-
load. The input to this algorithm are the candidate workload i,
the current allocation matrix x, the objective function Z, and
the set of spoke clusters M. First, the algorithm sorts all pairs
of (target cluster j, scheduled time slot t) for workload i in
descending order of ztij values (Line 1). Next, the algorithm
tries to find the first pair of (j, t) in which the workload could
be fitted (Lines 3-7). Here, fit(i,x, j, t) checks if workload i
with current allocation x is schedulable in time slot t and
cluster j or not. For this purpose, the fit procedure checks if
both constrains 5 and 7 are satisfied.



Algorithm 3 Allocation(i, x, Z,M)

1: Sort all (j, t) ∈M× T in non-increasing order of ztij .
2: (j∗, t∗)← (−1,−1)
3: for each (j, t) ∈M× T do
4: if fit(i,x, j, t′) ∀t′ ∈ {t, . . . t+ li − 1} then
5: (j∗, t∗)← (j, t)
6: break
7: Output: (j∗, t∗) =0

IV. IMPLEMENTATION

Caspian3 is an open source Kubernetes controller written in
Golang. Caspian uses Multi-Cluster App Dispatcher (MCAD)4

as a workload queuing and multi-cluster management platform
to dispatch and handle workloads in the destination clusters. In
this section, we describe MCAD in more detail and elaborate
on its interaction with Caspian.

A. Multi Cluster App Dispatcher (MCAD)

MCAD is a Kubernetes controller that enables the deploy-
ment of batch jobs in multi-cluster environments. It provides
mechanisms to guarantee that sufficient resources are available
in the destination clusters before creating pods for executing
workloads. MCAD deploys an AppWrapper (AW) custom
resource to wrap any Kubernetes object including service, job,
deployment, and other custom resources defined by the user.
AW custom resource helps MCAD to support batch jobs and
gang scheduling in Kubernetes clusters. Kubernetes objects
within an AW stay in the queue until the total requested
resources are available in the destination cluster.

At the AW level, a user can specify resource requirement for
each object, expected run time of the workload, the deadline
for the completion time of the workload, and the policies for
the clusters. In addition to workload characteristics, there are
scheduling specification fields in AW to support scheduling
and placement in multi-cluster environment. One of these
fields is dispatchingGates which indicates the list of gates that
are placed by different placement engines on the workload.
Each placement engine (such as Caspian) may have some
policies on the workloads. For instance, Caspian may want to
suspend an AW from execution due to sustainability concerns.
To accomplish this, Caspian adds a sustainability gate to
this field requesting MCAD to suspend the execution of a
workload. Another scheduling related field in AW is target-
Cluster which is set by the placement engines. For example,
if the optimizer decides to place a workload on a specific
cluster Spoke1, the scheduler in Caspian sets the targetCluster
field in AW to Spoke1, notifying MCAD that this workload
is scheduled on Spoke1. Then, MCAD will do its part in
managing the life cycle of the workload in Spoke1.

MCAD works in two different modes: dispatcher mode and
runner mode. In the hub cluster, MCAD runs in dispatcher
mode (MCAD Dispatcher), while in each spoke cluster, it
runs in runner mode (MCAD Runner). MCAD Dispatcher and
MCAD Runner coordinate with each other to manage queuing,

3https://github.com/sustainablecomputing/caspian
4https://github.com/project-codeflare/mcad

Fig. 2: Integration of Caspian with MCAD.

error handling, and execution of AWs through the Syncer
component in MCAD. In addition to the AW, MCAD intro-
duces the ClusterInfo custom resource, which represents the
characteristics of clusters, such as resource availability, power
consumption characteristics, geolocation, and carbon intensity.
Some of these fields such as resource availability, power
consumption characteristics, and geolocation are updated by
the ClusterInfo Controller (another component of MCAD) in
spoke clusters, while some other characteristics such as carbon
intensity could be set by other external controllers such as the
carbon tracker component in Caspian.

B. Integration of Caspian with MCAD

A summary of interactions between MCAD and Caspian is
depicted in Figure 2. (1) In each spoke cluster, ClusterInfo
controller periodically gets the geo-location of the cluster as
well as the available resources in the cluster and updates
ClusterInfo custom resource accordingly. (2) The Syncer in
the hub cluster, periodically upsyncs the objects from the
spoke clusters to the hub cluster. This way, Caspian has
access to the updated status of ClusterInfo as well as the
status of AWs executing in the spoke clusters. (3) In the
hub cluster, Caspian runs periodically. At the beginning of
each period, it gets the geo-location of the spoke clusters.
(4) Then, it fetches carbon intensity data of those specific
zones from Electricity Maps5, a tool that provides real-time
information about the carbon intensity of electricity generation
in various regions. (5) Carbon Tracker component in Caspian
updates the carbon intensity field in ClusterInfo. (6) Next,
Scheduler in Caspian gets the list of spoke clusters as well as
AWs. Then, it calls the optimizer to find the best scheduling
and placement for AWs. (7) Finally, the scheduler updates
targetCluster for those AWs that are scheduled during the
upcoming time slot and removes the sustainability gates from
the list of dispatchingGates. For those AWs that are not
scheduled during the upcoming time slot, the scheduler adds a
sustainability gate to the list of dispatchingGates. (8) MCAD
Dispatcher is notified about these changes. Those AWs that
are in Running or Dispatching phases, and now are requested

5https://app.electricitymaps.com/map



Fig. 3: Hourly carbon intensity of clusters.

by Caspian for suspension, will transit to Requeuing phase
(to be queued again). Those AWs that are scheduled during
the upcoming time slot, if they are ready to dispatch from
MCAD perspective, the MCAD dispatcher changes their status
to Dispatching phase. (9) MCAD Syncer pushes the scheduled
AWs to the corresponding spoke clusters. (10) MCAD Runner
executes workloads in the spoke cluster and updates their
status accordingly. (11) The status of AWs are pulled by the
MCAD Syncer in the hub cluster, letting users aware of the
status of their workloads.

V. EXPERIMENTAL ANALYSIS

In this section, we compare the performance of Caspian
for different types of problem instances. First, we investigate
the impact of sustainability of clusters on the scheduling
and placement decisions made by Caspian and compare the
results with a baseline which does not consider sustainability
of clusters in its decision making. We show that Caspian
schedules a high percentage of workloads within their deadline
while it also significantly reduces the carbon footprint due to
the execution of workloads. Then, we vary the sustainability
weight (ω1) and investigate its impact on lateness, carbon
emission and completion time of workloads. We show that
by increasing the sustainability weight, a higher amount of
carbon is reduced; but a higher percentage of workloads may
miss their deadline. We conclude that great care has to be
taken when setting the values of the weights ωk.

A. Experimental Setup

In conducting our experiments, we consider a configuration
consisting of four Kubernetes clusters: a hub cluster and
three spoke clusters that are denoted by Spoke1, Spoke2, and
Spoke3. All clusters are created using k3d6. Each spoke cluster
consists of two homogeneous nodes, each equipped with 16
GPUs. Thus, each spoke cluster has a total of 32 GPU cores.
We assume that spoke clusters are located in three different
electricity grid regions. Spoke1 is located in Ontario, Canada
(CA-ON), Spoke2 in Kansai, Japan (JP-KN), and Spoke3
in Germany (DE). Figure 3 shows the carbon intensity of
electricity source of each cluster during the 40-hour period
starting from November 14th, 2023. We employ Electricity
Map to get carbon intensity data for the grid regions. The
data indicates that electricity source of Spoke1 has the lowest
carbon intensity, whereas electricity sources of Spoke2 and
Spoke3 both illustrate high carbon intensities.

6https://k3d.io

We assume that Spoke2 is twice more power efficient than
other spoke clusters and set ρ1 = ρ3 = 200, ρ2 = 100. This
implies that although Spoke2 and Spoke3 both are powered
by a high carbon intensity electricity source; Spoke2 is more
power efficient and is expected to be more preferable by
Caspian. In our experimental setup, we focus on long-running
workloads with execution time ranging from one hour to
five hours, e.g. AI training jobs. We exclude short-running
workloads from our experiments as they typically come with
tight deadlines and cannot tolerate delays. We use Poisson
distribution for the arrival of 200 workloads over 24 hours.
Each workload is represented by an AW consisting of a
BusyBox7 image to execute the workload’s task. The task
assigned to each AW is a simple UNIX sleep command8.

To perform an extensive experiments, we consider various
characteristics of the workloads. The GPU requirement of
each workload is randomly drawn from the uniform distri-
bution U(1, 5). Similarly, the run time for each workload
is randomly chosen from another independent uniform dis-
tribution, U(1, 5). We assume that workloads have deadlines
proportional to their run times. Thus, the deadline is calculated
based on a slowdown factor β. For example, for workload i,
if the workload is submitted in time slot t, the deadline of
workload is defined as di = t+ β × li, where the value of β
is randomly chosen from uniform distribution U(2, 4).

B. Analysis of Results

First, we investigate the impact of sustainability of clusters
on the scheduling and placement decisions. We run Caspian in
two different modes but under the same environmental condi-
tions: (1) sustainable mode in which Caspian considers a non-
zero weight for sustainability objective, i.e., ω1 = 1, and (2)
baseline mode in which the weight for sustainability objective
is zero, ω1 = 0. For both modes, we consider the same pref-
erence for the other objective functions, namely ω2 = ω3 = 1.

Figure 4a illustrates the GPU allocation of clusters over time
slots when Caspian is in the sustainable mode. We observe that
Caspian first starts allocating workloads to Spoke1 which has
the lowest carbon emission rate. With the increase of the load
over time, Caspian starts using Spoke2 (at time slot t = 5) to
manage QoS of workloads. Later, it also uses Spoke3 (time
slot t = 9) to schedule workloads. Then, when the peak time is
passed, Caspian reduces the allocations on Spoke2 and Spoke3
and relies more on Spoke1. Thus, in all, Spoke1 has the highest
GPU allocation compared to the other spoke clusters. We
also observe that although the carbon intensity of electricity
source for Spoke2 and Spoke3 is in the same range, Spoke2
receives higher workloads requests compared to Spoke3. The
reason is that Spoke3 has a lower power efficiency, hence
not preferred by Caspian. Another observation from the figure
is the makespan of execution of workloads. We observe that
all workloads are completed by time slot t = 39. Figure 4b
illustrates the GPU allocation of clusters when Caspian is in

7https://busybox.net
8Note that, in our experiments, we do not directly measure utilization, rather

we assume it to be proportional to resource demand.



(a) Sustainable mode

(b) Baseline mode

Fig. 4: GPU Allocation of clusters over time slots running Caspian in (a) sustainable mode; (b) baseline mode.

the baseline mode. In this mode, a lower makespan is achieved
(29 hours). We also observe that Caspian distributes workloads
equally among clusters to guarantee low average completion
time and low average lateness of workloads.

Figure 5 compares the overall performance of Caspian
in the two modes. Figure 5a illustrates the carbon measure
of execution of workloads in each mode. Carbon measure
in time slot t reflects the total carbon footprint generated
by the execution of workloads from the first time slot to
the current time slot t. We observe that when Caspian is
in sustainable mode, a significantly lower carbon emission
is achieved compared to the baseline mode. We define a
performance metric carbon saving (CS) as follows,

CS = 100× C − C∗

C
, (9)

where C and C∗ are the carbon measures in baseline and
sustainable modes, respectively. In this experiment, we observe
that the value of CS is 38.2% indicating that by executing
workloads in sustainable mode, Caspian reduces carbon emis-
sion by 38.2%.

To evaluate the efficiency of Caspian regarding the QoS
of workloads, we define α as the completion time ratio of
workloads. The higher value of α indicates the longer response
time of workloads compared to their deadline. Let us denote
the submission time of workload i by si and the completion
time by fi, the completion time ratio of workload i is given
by α = (fi − si)/(di − si). Here, α ≤ 1 indicates that the
workload is completed by its deadline. The greater values
of α indicate the lateness of workloads. Figure 5b illustrates
a histogram of the value of α for workloads scheduled by
Caspian in sustainable mode. We observe that a relatively
high percentage of workloads are executed by their deadline
and just a fraction of workloads (around 7.2%) miss their
deadline. The reason is that, in sustainable mode, Caspian tries
to balance a trade off between all objective functions. Thus, to
reduce the carbon emission, some workloads may miss their
deadline. However, since Caspian also considers QoS, this
percentage is pretty low. Figure 5c shows the histogram of

the value of α when Caspian is in baseline mode. Since in
this mode, the scheduler does not postpone any workload due
to sustainability, all workloads complete by their deadline.

In the next set of experiments, we investigate the impact
of weight ω1 on overall performance. We set ω2 = ω3 = 1,
and vary the value of ω1 from zero to two, assigning various
weights to the sustainability objective. Here, ω1 = 0 is the
baseline case where Caspian does not incorporate sustainabil-
ity aspects of clusters in its decision making. With the increase
in the value of ω1, Caspian considers a higher weight for
sustainability. Figure 6a shows the percentage of carbon saving
obtained due to various values of ω1. The value of carbon
saving is obtained based on Equation (9), in which C is the
carbon measure using Caspian in the baseline mode and C∗ is
the carbon measure when we run Caspian with the given value
of ω1. We observe that by increasing ω1, a higher value of
carbon saving is achieved. For example, for ω1 = 0.25, carbon
saving is 19.4% while for ω1 = 2, the value is 42.4%. In
Figure 6b, the average completion time ratio of all workloads
for different values of ω1 is depicted. We observe that as the
value of ω1 increases, more emphasis is placed on the first
objective Z1, leading to an increase in the completion time of
workloads. For instance, for ω1 = 0, the average completion
ratio is 0.49, while for ω1 = 1, this ratio is 0.72. We also
observe a big jump in completion time ratio over the case of
ω1 = 1 and the case of ω1 = 2. This jump is also observed in
Figure 6c where the percentage of workloads that meet their
deadline is plotted. We observe that for ω1 = 2, about 15%
of workloads miss their deadline, which is not a negligible
value. For ω1 = 0.5, we get 33.21% carbon reduction, 98.28%
meeting deadline, and 0.6 completion ratio. This experiment
demonstrates the importance of setting the right values for the
preference factors.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed Caspian, a carbon-aware batch
scheduler in multi-cluster Kubernetes environments, with the
aim of minimizing carbon emission due to the execution



(a) Carbon measure. (b) Completion time ratio (ω1 = 1). (c) Completion time ratio (ω1 = 0).

Fig. 5: Overall performance of Caspian: sustainable mode vs baseline mode.

(a) Carbon saving. (b) Completion time. (c) Late workloads (%).

Fig. 6: Performance of Caspian for various values of ω1 .

of workloads, while satisfying Quality of Service (QoS) re-
quirements. We designed a framework for multi-cluster en-
vironments in which Caspian interacts with the multi-cluster
management platform. Caspian periodically collects informa-
tion about workloads and clusters, then decides on when and
where workloads are executed. Such scheduling and placement
decisions are communicated to the multi-cluster manager,
which in turn applies those decisions and handles the execution
of workloads over the multiple clusters. Employing a running
implementation in multiple Kubernetes clusters, we evaluated
Caspian using real-world carbon intensity data and workloads
with varying characteristics. The experimental results showed
that Caspian achieves high carbon reduction compared to a
baseline scheduler which only considers the QoS of workloads.
In the future, we plan to enhance Caspian by: (i) investigating
the potential of considering clusters with heterogeneous pro-
cessing power, (ii) integrating machine learning algorithms to
predict the power consumption of workloads, and (iii) extend-
ing the experiments by considering real-word workloads.
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et al. Lean ict: Towards digital sobriety. Report for the Think Tank The
Shift Project, 6:16–28, 2019.
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