
A Carbon-aware Workload Dispatcher in Cloud
Computing Systems

Tayebeh Bahreini
IBM T.J. Watson Research Center

Yorktown Heights, NY
tbahreini@ibm.com

Asser Tantawi
IBM T.J. Watson Research Center

Yorktown Heights, NY
tantawi@us.ibm.com

Alaa Youssef
IBM T.J. Watson Research Center

Yorktown Heights, NY
asyousse@us.ibm.com

Abstract—The amount of carbon emission associated with the
computational energy consumption in data centers depends, in
a significant way, on the schedule of the workloads. Due to
the inconsistent availability of renewable energy over time, in
addition to the existence of various sources of power in grid
regions, the carbon intensity of data centers changes over time
and location. Thus, the placement and scheduling of flexible
workloads, based on the carbon intensity of power sources in
data centers, can remarkably decrease the carbon emission. In
this paper, we address the problem of placement and scheduling
of workloads over geographically distributed data centers. We
propose two algorithms that take the variability of carbon
intensity of the power sources of the data centers, as well as their
computational resource availability, into account when deciding
about the placement and scheduling of the workloads. The first is
a randomized rounding approximation algorithm that provides
solutions that are guaranteed to be within a given distance from
the optimal solution. The second is a sample-based algorithm
that improves the solutions obtained by the randomized rounding
approximation algorithm. The experimental results show that the
proposed algorithms can solve the problem efficiently.

Index Terms—approximation algorithm, cloud sustainability,
green computing, placement, randomized rounding, scheduling

I. INTRODUCTION

The electricity of data centers is supplied from various
sources of renewable and non-renewable energy provided by
the grid or on-site generators. Renewable sources have a low
carbon emission, but there is uncertainty in their availability.
To satisfy the electricity demand, the grid has to use both
renewable and non-renewable sources. Figure 1a shows the
average fraction of electricity generated by various sources of
energy during January 2023 in three electricity grid zones:
Markham in Ontario, Canada (CA-ON), Rochester in New
York, US (US-NY), and Portsmouth in the UK (GB). We
observe that the fraction of each renewable or non-renewable
energy source varies across the regions. On the other hand,
the availability of renewable energy in a region depends on
weather conditions, thus is highly unstable. The electricity
demand is also constantly changing and the grid may need
to turn on/off generators to meet the demand. As a result,
the carbon intensity, which is the weighted average of carbon
emitted by each source, varies over time. Figure 1b shows
how the hourly carbon intensity changes over five days in the
three regions. Another challenge related to renewable energy
is that, in the case of low demand, the power generated

by renewable sources may be wasted as storing energy is
expensive [10]. Thus, utilizing these sources of energy is
of high importance. To reduce the carbon emission, cloud
providers should consider this variation when they decide
about the execution of their workloads. In other words, cloud
providers can reduce carbon emission by properly placing
and scheduling jobs through a choice of a data center and
a particular time of day.

Several efforts have been devoted to minimizing the carbon
footprint associated with the computational energy consump-
tion in cloud systems. A body of research has considered job-
level temporal shifting of workloads as an effective way of
reducing carbon emission [1], [6], [7], [11]. The main idea
of these approaches is to postpone the execution of some
jobs until the carbon intensity (or other objectives such as
cost and/or completion time) is low. For example, Liu et
al. [11] studied shifting flexible workloads in order to take
advantage of time variations of electricity price, the availability
of renewable energy, and the efficiency of cooling. They con-
sidered several hours to multiple days as deadline of the jobs.
In contrast to temporal shifting, many studies addressed the
spatial workload placement among geographically distributed
data centers [2], [5], [15]. The goal of these approaches is to
execute workloads at data centers where the objective value
(e.g., carbon footprint, QoS, or cost) is optimized. For exam-
ple, Doyle et al. [5] developed a distributed algorithm to decide
about the target server for workloads with the objective of
minimizing carbon footprint of executing the workloads while
QoS is satisfied. There are also few treatments in the literature
that considered both time and space dimensions when they
decide about the schedule of jobs [13]. In addition to job-
level optimization, some studies have focused on load-level
optimization [4], [12], in which, based on the hourly demand
as well as the carbon intensity/availability of renewable energy
in each hour, the optimizer adjusts the capacity. For example,
Google’s carbon intelligent computing system [12] reduces the
available capacity at particular hours of the day when the grid
carbon intensity is high or it brings a high cost to the system.

In this paper we consider both job-level and load-level
optimization by addressing the problem of Carbon-aware Job
Placement and Scheduling (CJPS). We consider both tem-
poral and spatial scheduling of the workloads while taking
into account anticipated future load. Our aim is to maximize



(a) Average electricity production by source. (b) Hourly carbon intensity.

Fig. 1: Power and carbon data in three grid regions.

the usage of computing resources when and where the carbon
intensity of power sources of data centers is low. We consider
a time slotted system, in which information about queued jobs
in the current time slot is available. Although there is a high
uncertainty in predicting the characteristics of each individual
job that may arrive in the future, the total resource demand
is predictable. Thus, in this paper, we consider the forecasted
resource demand while we decide about the current jobs in
the queue. We develop a randomized rounding approximation
algorithm (RR-APX) to solve CJPS. Our approximation
algorithm guarantees that it obtains a solution with the ex-
pected objective value (total green resource utilization) not
less than the optimal value, while the probability of violating
the constraints on the resources is bounded by a small factor.
We also develop a sample-based rounding algorithm (SRR-
APX) to improve the solution obtained by RR-APX.

II. CARBON-AWARE JOB PLACEMENT AND SCHEDULING

We address the CJPS problem for a cloud system with
multiple geographically distributed data centers. We consider a
time slotted system in which a set of jobs N is to be scheduled
on a set of data centersM within a look-ahead time horizon T ,
with the aim of maximizing the usage of computing resources
when and where low-carbon energy is available. The notation
we use in the formulation is provided in Table I.

Each job i ∈ N is characterized by the tuple (ri, li, di),
where ri is the required amount of the computational resource,
li is the run time, and di is the deadline. All parameters ri,
li, and di are integers. Here, we consider a single type of
computational resource, namely CPU, but the formulation can
be extended to multiple types. We assume that the preemption
of jobs is not allowed. Each data center j ∈M is characterized
by ({Bt

j , I
t
j}), where Bt

j is the available CPU resources and Itj
is the carbon intensity in time slot t. We assume that the length
of time slots is fixed and the carbon intensity and available
resources do not change within a time slot.

Due to the limited capacity, the decision maker may not
be able to allocate all jobs, rather it tries to allocate as many
jobs as possible (see the objective function). We assume that,
after a job starts in a data center, it is not allowed to migrate
to another data center. We define a binary variable xt

ij which

is one if job i starts at time slot t in data center j, and zero
otherwise. Thus, we have∑

j∈M

∑
t∈T

xt
ij ≤ 1 ∀i ∈ N , (1)

xt
ij = 0 ∀i ∈ N , j ∈M, t ∈ T , and t ≥ di − li. (2)

For future load, we consider more relaxed schedul-
ing/placement constraints. We denote by Rt′ the total CPU
demand in time slot t′, and by ztt

′

j , a continuous variable, the
fraction of demand of time slot t′ that is allocated in time slot t
(t ≥ t′). The total demand of time slot t′ can be allocated over
all data centers and time slots. Thus, we have∑

j∈M

∑
t∈T

ztt
′

j ≤ 1 ∀t′ ∈ T , (3)

ztt
′

j = 0 ∀j ∈M, t, t′ ∈ T , and t′ > t. (4)

For each data center j, the total amount of resources
allocated for the jobs plus the total resources reserved for
future load cannot exceed its available capacity, i.e.,∑
i∈N

∑
t′∈τt

i

xt′

ij · ri +
∑
t′∈T

ztt
′

j ·Rt′ ≤ Bt
j ∀j ∈M, t ∈ T . (5)

In the above formulation, the total resource allocation of
the jobs in time slot t on data center j is obtained based
on the resource requirement of the jobs running on that data
center in that particular time slot. Job i is running on data
center j in time slot t if it has been started in any time slots
in τ ti = {t− li + 1, . . . , t}.

The goal of CJPS is to maximize the CPU utilization when
and where the carbon intensity is low. For this purpose, we
define Green Resource Utilization (GRU) as a ratio between
the CPU utilization over the carbon intensity,

GRU t
j =

∑
i∈N

∑
t′∈τt

i

xt′

ij · ri + γ ·
∑
t′∈T

ztt
′

j ·Rt′

Itj
. (6)

Here, γ is a prioritization factor, where γ = 1 means that
we consider the same priority of using green resources for
jobs in the queue and for the future load. And, γ < 1 means
that jobs in the queue have a higher priority of using low-
carbon resources. The objective of CJPS is to maximize the



TABLE I: Notation

Notation Description
T Time horizon for executing the jobs.
M Set of m data centers.
N Set of n jobs currently in the queue.
Bt

j Available capacity of data center j in time slot t.
Itj Carbon intensity of data center j in time slot t.
ri Computational resource requested by job i.
Rt Total CPU demand in time slot t.
li Duration time of job i.
di Deadline to complete job i.
T Set of time slots in the look-ahead time horizon T .
xt
ij Binary variable, it is 1 if job i is started on

data center j in time slot t; and 0, otherwise.
ztt

′
j Continuous variable indicating the fraction of load

of time slot t′ allocated in time slot t on data center j.
γ Prioritization factor.

total value of Green Recourse Utilization (GRU) over all data
centers and over all time slots. It is given by,

max
∑
j∈M

∑
t∈T

∑
i∈N

∑
t′∈τt

i

xt′

ij · ri + γ ·
∑
t′∈T

ztt
′

j ·Rt′

Itj
.

Complexity. We prove that CJPS is NP-hard by showing a
special case of the problem is NP-hard. We consider a special
case of CJPS, namely S-CJPS, with a single data center and
a fixed carbon intensity I and capacity B over all time slots.
We assume that the deadline of all jobs is T , i.e., di = T ,
and there is no future load. For this special case, the optimal
solution is the solution that maximizes the total usage of CPU
over all time slots. Let us represent the data center with a
large rectangle of width T and height B. We also represent
each job i with a rectangle of width li and height ri. Finding
an optimal solution for S-CJPS is equivalent to packing a
subset of rectangles {(li, ri)} into a larger rectangle with
width T and height B so that the maximum space of the
large rectangle is used. This problem belongs to the class of
rectangle packing problems [8] that are known as NP-hard
problems. This implies that finding the optimal solution for
S-CJPS is NP-hard. Thus, CJPS in general is NP-hard.

III. PROPOSED ALGORITHMS FOR JOB PLACEMENT AND
SCHEDULING PROBLEM

Given that CJPS is NP-hard, the integer program of the
problem (CJPS-MILP) cannot be solved in polynomial time
unless P = NP . However, Linear Programs (LPs) are
polynomial-time solvable. In this section, we introduce two
LP-based algorithms for solving CJPS. The first algorithm is
a randomized rounding approximation algorithm, called RR-
APX. It is based on the LP relaxation of CJPS-MILP. We
show that the expected value of the objective function obtained
by RR-APX is not less than the objective value of the optimal
solution. However in each time slot, the total allocation may
exceed the available resources with some probability. To deal
with the capacity violation constraints, we develop SRR-
APX, a sample-based algorithm that has RR-APX in its core
and tries to improve the solution obtained by RR-APX using
sampling technique.

Algorithm 1 RR-APX Algorithm

Input: (N ,M)
1: X ← {0}
2: (X̄, Z)← LP-Solver(N ,M})
3: for each i ∈ N do
4: (j∗, t∗)←roll-dice(i, X̄)
5: xt∗

ij∗ ← 1

6: GRU ←
∑

j∈M
∑

t∈T

∑
i∈N

∑
t′∈τt

i

xt′
ij ·ri+γ·

∑
t′∈T

ztt′
j ·Rt′

It
j

7: X ← Xbest

Output: (GRU,X) =0

A. RR-APX Algorithm

RR-APX is built based on the LP relaxation of CJPS-
MILP in which constraints (2) are relaxed to,

0 ≤ xt
ij ≤ 1, ∀i ∈ N , j ∈M, t ∈ T , and t ≥ di − li. (7)

Let us denote by (X̄, Z) = ({x̄t
ij}, {ztt

′

j }), the optimal
solution to the LP relaxation. We do not touch the resource
reservation for future load obtained by the LP solution, i.e.,
Z, but we would like to round fractional values of {x̄t

ij}
to either 0 or 1. Our goal is to find an integer solution
X = {xt

ij}, without increasing the gap to the optimal solution
too much. An algorithmic description of RR-APX is given in
Algorithm 1. The input to RR-APX is the information of the
set of jobs and the set of data centers. The output consists of
the scheduling matrix and GRU. First, the algorithm initializes
the scheduling matrix with zero (Line 1). Then, it obtains
the fractional solution (X̄, Z) by solving the LP relaxation
of CJPS-MILP (Line 2). Independently, for each job i, the
algorithm calls roll-dice procedure. The roll-dice procedure
rolls a dice that has M × T sides of {(j, t)}, in which the
probability of getting side (j, t) is x̄t

ij . The output of the
procedure is the outcome of the rolling. It sets xt∗

ij∗ = 1, if the
outcome of the rolling is (j∗, t∗) (Lines 3-5). Then, RR-APX
calculates the value of GRU (Line 6) and returns it along with
the scheduling matrix.

1) Properties: First, we discuss the time complexity of RR-
APX and show that the algorithm is polynomial. Then, we
provide approximation bounds for the algorithm. For a given
input, RR-APX obtains an integer solution with the GRU
not less than the optimal value. However, the solution may
violate the capacity constraints. The probability of having total
allocation greater than or equal (1 + ϵ) · Bt

j on data center j
in time slot t is bounded by 1

(1+ϵ) .
Time complexity. The most time consuming part of the
algorithm is solving the LP relaxation of CJPS-MILP, which
takes polynomial time [9]. The other parts of the algorithm
(Lines 5-6) also have polynomial time complexity. Therefore,
the time complexity of the algorithm is polynomial.

Lemma 1. The expected value of GRU obtained by RR-APX
is not less than the optimal value OPT .



Proof. Let us denote by E[GRU(X,Z)] the expected value
of the total green resource utilization obtained by RR-APX
and by P the probability of the happening of an event,

E[GRU(X,Z)] =
∑
j∈M

∑
t∈T

∑
i∈N

∑
t′∈τt

i

P (xt′

ij = 1) · ri

Itj
+

∑
j∈M

∑
t∈T

γ ·
∑
t′∈T

ztt
′

j ·Rt′

Itj
≥

∑
j∈M

∑
t∈T

∑
i∈N

∑
t′∈τt

i

x̄t′

ij · ri

Itj
+

∑
j∈M

∑
t∈T

γ ·
∑
t′∈T

ztt
′

j ·Rt′

Itj
≥ LP ∗ ≥ OPT,

where LP ∗ is the objective value of the LP relaxation.

Now, we introduce Markov’s inequality to be able to analyze
the feasibility of the solutions obtained by RR-APX. In simple
words, Markov’s inequality says that for a non-negative ran-
dom variable Y and any positive real number a, the probability
that Y is at least a is less than or equal to the expected value
of Y divided by a.

Lemma 2 (Markov’s inequality). Let Y be a random variable
that takes only non-negative values and a > 0, then,

P [Y ≥ a] ≤ E[Y ]

a
. (8)

Lemma 3. The probability that the total resource allocation
obtained by RR-APX in time slot t on data center j is at least
(1 + ϵ) ·Bt

j is bounded by 1
(1+ϵ) , where ϵ > 0. i.e.,

P

∑
i∈N

∑
t′∈τt

j

ri · xt′

ij +
∑
t′∈T

ztt
′

j ·Rt′ ≥ (1 + ϵ) ·Bt
j

 ≤ (9)

1

(1 + ϵ)
∀j ∈M, t ∈ T .

Proof. We define a random variable At
j as the total allocation

on data center j in time slot t, i.e.,

At
j =

∑
i∈N

∑
t′∈τt

i

ri · xt′

ij +
∑
t′∈T

ztt
′

j ·Rt′ . (10)

The expected value of At
j is obtained as follows,

E[At
j ] =

∑
i∈N

∑
t′∈τt

j

ri · P [xt′

ij = 1] +
∑
t′∈T

ztt
′

j ·Rt′ ≤ (11)

∑
i∈N

∑
t′∈τt

j

ri · x̄t′

ij +
∑
t′∈T

ztt
′

j ·Rt′ ≤ Bt
j .

The last inequality comes from the fact that (X̄, Z) is a
feasible solution for the LP relaxation of CJPS-MILP. On the
other hand, At

j takes on non-negative values. Thus, according
to Markov’s inequality,

E[At
j ] ≥

(
(1 + ϵ) ·Bt

j

)
· P [At

j ≥ (1 + ϵ) ·Bt
j ]. (12)

Therefore, we can conclude that,

P [At
j ≥ (1 + ϵ) ·Bt

j ] ≤
E[At

j ]

(1 + ϵ) ·Bt
j

≤ 1

(1 + ϵ)
. (13)

Based on Lemma 1 and Lemma 3, we can conclude the
following theorem.

Theorem 1. The RR-APX algorithm obtains an integer solu-
tion for CJPS-MILP with the expected value of green resource
utilization not less than optimal value while the probability of
having total allocation greater than or equal (1 + ϵ) · Bt

j in
any time slot and data center is bounded by 1

(1+ϵ) .

B. SRR-APX Algorithm

In Subsection III-A1, we showed that the solution obtained
by RR-APX may violate the capacity constraints with some
probability. To improve the solution, we use a sampling
technique in which, instead of getting one sample from the
fractional solution X̄ , we get S samples. After obtaining a
fractional solution, the algorithm rolls the dice for each job
independently and repeats this procedure for S times to reduce
the risk of over allocation and obtain a better solution. Here,
by better solution, we mean the solution in which a lower rate
of job failures occurs. In RR-APX, we guarantee that all jobs
are scheduled and finished before their deadline, while there
is a probability of over allocation. Different from RR-APX,
SRR-APX seeks to find a solution that guarantees that no over
allocation happens; but some jobs may fail to be scheduled.
From a practical point of view, SRR-APX is more favorable
when there is no auto-scaling option in the cluster.

SRR-APX is given in Algorithm 2. The algorithm first
initializes the variables (Lines 1-3). Here, Fbest saves the
number of failed jobs in the best solution, GRUbest saves the
associated GRU value, and Xbest saves the scheduling matrix.
The algorithm obtains the fractional solution for CJPS-MILP
by calling the LP-solver procedure (Line 4). Then, it generates
S random solutions from the fractional solution X̄ through
a loop (Lines 5-25). Variable F saves the number of failed
jobs of the current solution, X is the scheduling matrix,
and A is a matrix saving the total allocation on each data
center in each time slot. Each solution is built by calling
roll-dice procedure, independently for each job (Line 10). If
by scheduling the current job i, the total allocation exceeds
the capacity, the job is dropped and accordingly, the number
of failed jobs is updated (Lines 11-17). If violation does not
happen, the algorithm updates the scheduling matrix and the
allocation matrix (Lines 18-21). After rolling the dice for all
jobs, the algorithm compares the solution obtained by the
current sample with the best solution so far. The one that has
the minimum number of failures is the desirable solution. If
two samples have the same number of failures, the algorithm
picks the one that has the highest GRU value (Lines 22-25).
Finally, the algorithm returns the value of GRU of the best
solution along with the scheduling matrix X .



Algorithm 2 SRR-APX Algorithm

Input: (N ,M)
1: Fbest ← N
2: GRUbest ← 0
3: Xbest ← {0}
4: (X̄, Z)← LP-Solver(N ,M)
5: for each s ∈ S do
6: F ← 0
7: X ← {0}
8: A← {0}
9: for each i ∈ N do

10: (j∗, t∗)← roll-dice(i, X̄)
11: violated← False
12: for t ∈ {t∗, . . . t∗ + li − 1} do
13: if At∗

j∗ + ri > Bt
j∗ then

14: violated← True
15: break
16: if violated then
17: F ← F + 1
18: else
19: xt∗

ij∗ ← 1
20: for t ∈ {t∗, . . . , t∗ + li − 1} do
21: At

j∗ ← At
j∗ + ri

22: if F < Fbest or (F = Fbest and GRU(X,Z) >
GRUbest) then

23: Fbest ← F
24: GRUbest ← GRU(X,Z)
25: Xbest ← X
26: GRU ← GRUbest

27: X ← Xbest

Output: (GRU,X) =0

IV. EXPERIMENTAL ANALYSIS

For our experiments, we use a two month workload trace
collected from a production cluster in Alibaba PAI [14]. The
workloads are a mix of training and inference jobs. From
the trace, we choose long-running time jobs with run time
between 30 minutes to five hours. We exclude short-running
jobs from the experiments as they usually require a short
deadline and cannot tolerate long delays. Furthermore, the
carbon intensity of clusters does not change quickly. Thus, the
impact of scheduling short-running jobs may not be significant.
We set the length of each time slot to 30 minutes and extract
the information of the jobs from randomly 70 consecutive time
slots (35 hours) from the trace to simulate the arrival of the
jobs as well as future load. We use publicly available web
services that provide carbon intensity data and consider three
electricity grid zones: Markham in Ontario, Canada, Rochester
in New York, US, and Portsmouth in the UK.

Our experimental results include two parts. The first part
of the experiments is for small size problem instances. The
aim of this part is to compare the solutions obtained by SRR-
APX with the optimal solution obtained by CPLEX solver,
which is not able to solve large-scale problems in a reasonable

amount of time. To stress test both SRR-APX and CPLEX,
we generate random jobs (to provide more heterogeneity) in
which the run time as well as the resource requirement of
jobs is chosen from a random uniform distribution U [1 10].
In the second part, we consider more realistic environments,
in which the scheduler runs periodically over time slots. For
this part, we generate jobs using the Alibaba traces. In this
set of experiments, the scheduler is run over 50 time slots.
To evaluate the scalability of SRR-APX, we fix the available
capacity and vary the number of submitted jobs from 1,000
to 6,000 jobs, in order to simulate various load in the system.
For this size of problem, CPLEX is not able to be run in a
reasonable amount of time. Thus, we do not compare SRR-
APX with CPLEX. We consider a variant of SRR-APX in
which reserving resources for the future load is not considered
when the optimizer decides about the schedule of the current
jobs. We do this by setting γ = 0. We consider this variant as a
baseline and compare its solutions to the solutions obtained by
SRR-APX algorithm for γ = 1, in which jobs are scheduled
with reserving resources for future load.

SRR-APX and CPLEX are implemented in python version
3.6.0 and executed on an Intel 2.3 GHz Core i9 with 64 GB
RAM system. For the experiments involving CPLEX we used
the CPLEX 12.8 solver provided by IBM ILOG CPLEX [3].
Each experiment is performed ten times and the analysis is
performed based on the average value of the metrics.

First we compare the quality of solutions obtained by SRR-
APX to that of the solutions obtained by using the CPLEX
solver, to solve CJPS-MILP. We fix the capacity to 50 cores,
i.e., Bt

j = 50, and vary the load by increasing the number of
jobs submitted to the system between n = 10 and n = 100.
We chose this type of instances in order to be able to solve
them optimally using CPLEX and compare the performance
of our algorithm with that of the optimal solution.

Figure 2a shows the average execution time of CPLEX and
that of SRR-APX on a logarithmic scale. For each instance,
the average execution time of CPLEX is several orders of
magnitude higher than the execution times of SRR-APX. For
example, in the case of instances with n = 10, the average
execution time of SRR-APX is around 186 milliseconds,
while for CPLEX it is around 12,181 milliseconds. We also
observe an increase in the execution time of both approaches
with the increase in the number of jobs. SRR-APX shows
a polynomial growth of the running time with the increase
of the number of jobs, while CPLEX shows an exponential
behaviour. The reason is that the time complexity of the SRR-
APX algorithm is polynomial, while the time complexity of
CPLEX to find the exact solution is exponential.

We define a performance metric called GRU ratio = GRU∗

GRU
as the ratio between the objective value obtained by CPLEX,
GRU∗, and that obtained by SRR-APX, GRU. We also define
Job Satisfaction ratio JS ratio as the percentage of jobs
that are executed before their deadline. Figure 2b shows the
average GRU ratio for each problem instance. We observe
that this ratio varies between 1.09 and 1.2 which is an
acceptable range. We do not observe any significant increase



(a) Execution time. (b) Green resource utilization ratio. (c) Job satisfaction ratio.

Fig. 2: SRR-APX vs. CPLEX.

(a) Execution time. (b) Carbon footprint ratio. (c) Job satisfaction ratio.

Fig. 3: Impact of resource reservation on performance of SRR-APX.

in the GRU ratio with the increase in the number of jobs.
Figure 2c shows the average JS ratio obtained by CPLEX
and SRR-APX for each problem instance. We observe that
JS ratio obtained by SRR-APX is very close to that of
CPLEX for all sizes of instances. With the increase of the load,
JS ratio of both approaches decreases as lower resources are
available per job.

Next, we investigate the scalability and performance of the
SRR-APX algorithm for large size problem instances. We fix
the available capacity of each cluster to 700 cores and run
the algorithm over 50 time slots. We vary the number of jobs
submitted over 50 time slots between 1,000 to 6,000 to have
load between 25% to 70%. For this experiment, we consider
two classes of problem instances. In the first class, we set
γ = 1 to give the same weight to the current job and future
load when deciding on the scheduling and the placement. In
the second class, we set γ = 0, forcing the optimizer to neglect
the future load. We investigate the impact of the value of γ
on the scheduling and placement of the jobs.

Figure 3a shows the execution time of the algorithm for both
cases. We observe that the execution time of the algorithm
polynomially increases with the increase of load (number of
jobs). For all cases the average execution time of the algorithm
is less than one second that makes the algorithm suitable for
online scheduling in cloud environment. We define Carbon
FootPrint ratio, CFP ratio, as the ratio of the total carbon
footprint of executing jobs obtained by SRR-APX with γ =
1 over that obtained by SRR-APX with γ = 0. Figure 3b
shows the average CFP ratio per time slot. Here, we observe
that for load less than 66.6%, CFP ratio decreases with the
increase of the load. This indicates that by the increase of
the load, the carbon footprint obtained with considering future
load is lower than that without considering future load. Then,

for load > 0.66, we observe that with the increase of the load,
this ratio increases as well. The reason is that for these problem
instances, a relatively higher percentage of the jobs fail when
future load is not considered, as illustrated in Figure 3c. Thus,
fewer jobs are executed and lower carbon footprint is obtained
for this class yield in a higher CFP ratio. Figure 3c shows
the average JS ratio for various load. We observe that the
job satisfaction ratio decreases with the increase of the load.
The reason is that with the increase of the load, a lower rate
of the jobs can be allocated due to the limited capacity and we
expect a higher rate of job failures. We also observe that for
each problem instance, with the case of γ = 1, a higher job
satisfaction ratio is obtained compared to the case with γ = 0.

V. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of carbon-aware
placement and scheduling of workloads over geographically
distributed data centers. We proved that the problem is NP-
hard and developed two efficient algorithms, RR-APX and
SRR-APX, for solving the problem. The RR-APX algorithm
is an LP-based approximation algorithm that guarantees strong
approximation bounds on the constraints and the objective
function. The SRR-APX algorithm is a sample-based algo-
rithm that has RR-APX in its core. We performed extensive
experiments, based on real data traces and simulations, to
investigate the performance of the SRR-APX algorithm. The
results of these experiments indicated that the SRR-APX
algorithm obtains high quality solutions and results in very
low execution times. For future work, we plan to design a
green scheduler for Kubernetes environment and deploy the
SRR-APX algorithm to dispatch workloads over multi clusters
based on the availability of low-carbon energy.



REFERENCES

[1] T. Bahreini, A. Tantawi, and A. Youssef. An approximation algorithm
for minimizing the cloud carbon footprint through workload scheduling.
In 2022 IEEE 15th International Conference on Cloud Computing
(CLOUD), pages 522–531, 2022.

[2] C. Chen, B. He, and X. Tang. Green-aware workload scheduling
in geographically distributed data centers. In 4th IEEE international
conference on cloud computing technology and science proceedings,
pages 82–89. IEEE, 2012.

[3] I. I. Cplex. V12. 8: User’s manual for cplex. International Business
Machines Corporation, 46(53):157, 2009.

[4] X. Deng, D. Wu, J. Shen, and J. He. Eco-aware online power
management and load scheduling for green cloud datacenters. IEEE
Systems Journal, 10(1):78–87, 2014.

[5] J. Doyle, D. O’Mahony, and R. Shorten. Server selection for carbon
emission control. In Proceedings of the 2nd ACM SIGCOMM workshop
on Green networking, pages 1–6, 2011.

[6] Í. Goiri, K. Le, M. E. Haque, R. Beauchea, T. D. Nguyen, J. Guitart,
J. Torres, and R. Bianchini. Greenslot: scheduling energy consumption
in green datacenters. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 1–11, 2011.

[7] Í. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bianchini.
Greenhadoop: leveraging green energy in data-processing frameworks.
In Proceedings of the 7th ACM european conference on Computer
Systems, pages 57–70, 2012.

[8] K. Jansen and G. Zhang. Maximizing the total profit of rectangles
packed into a rectangle. Algorithmica, 47:323–342, 2007.

[9] L. G. Khachiyan. A polynomial algorithm in linear programming.
In Doklady Akademii Nauk, volume 244, pages 1093–1096. Russian
Academy of Sciences, 1979.

[10] W. Li, T. Yang, F. C. Delicato, P. F. Pires, Z. Tari, S. U. Khan, and
A. Y. Zomaya. On enabling sustainable edge computing with renewable
energy resources. IEEE Communications Magazine, 56(5):94–101,
2018.

[11] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah,
and C. Hyser. Renewable and cooling aware workload management for
sustainable data centers. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Measurement
and Modeling of Computer Systems, pages 175–186, 2012.

[12] A. Radovanovic, R. Koningstein, I. Schneider, B. Chen, A. Duarte,
B. Roy, D. Xiao, M. Haridasan, P. Hung, N. Care, et al. Carbon-aware
computing for datacenters. arXiv preprint arXiv:2106.11750, 2021.

[13] I. Rocha, C. Göttel, P. Felber, M. Pasin, R. Rouvoy, and V. Schiavoni.
Heats: Heterogeneity-and energy-aware task-based scheduling. In 2019
27th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pages 400–405. IEEE, 2019.

[14] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding. MLaaS in the wild: Workload analysis and schedul-
ing in large-scale heterogeneous GPU clusters. In 19th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
22), 2022.

[15] Y. Zhang, Y. Wang, X. Wang, et al. Greenware: Greening cloud-scale
data centers to maximize the use of renewable energy. In Middleware,
volume 7049, pages 143–164. Springer, 2011.


