
An Approximation Algorithm for Minimizing the
Cloud Carbon Footprint through Workload

Scheduling
1st Tayebeh Bahreini

IBM T.J. Watson Research Center
Yorktown Heights, NY

tbahreini@ibm.com

2nd Asser Tantawi
IBM T.J. Watson Research Center

Yorktown Heights, NY
tantawi@us.ibm.com

3rd Alaa Youssef
IBM T.J. Watson Research Center

Yorktown Heights, NY
asyousse@us.ibm.com

Abstract—In this paper, we address the problem of workload
scheduling in data centers, while considering the greenness of
the power sources. We prove that finding a feasible solution
for the problem is NP-hard. Therefore, we develop an LP-based
approximation algorithm to solve the problem in polynomial time.
The proposed algorithm provides strong approximation bounds
on the constraints and the objective of the problem. We conduct
an extensive experimental analysis to evaluate the performance
of the proposed algorithm using real world data.

Index Terms—cloud optimization, cloud sustainability, green
computing, approximation algorithm, resource constrained
scheduling

I. INTRODUCTION

Cloud computing is one of the most promising paradigms
that provides scalable computing services to users. The core
advantage of cloud computing stems from the powerful in-
frastructure that includes large data centers hosting several
thousands of servers. In the last decade, with the dramatically
increasing demands for the cloud services, the energy con-
sumption of data centers has continued to accelerate rapidly.
Data centers consume around 1% of the global electricity [19],
contributing to 0.3% of the global CO2 emissions [4]. Thus,
to improve the environmental sustainability, cloud providers
must manage energy consumption of data centers and utilize
more renewable energy to reduce carbon emissions. This is
a multi-pronged endeavor, ranging from facility and cooling
improvements, use of more efficient hardware technologies, to
workload management. In this paper we are concerned with
the latter.

Cloud providers such as Amazon, Google, and IBM have
multiple geographically distributed data centers to provide
highly reliable services and more transparency to users. Hav-
ing data centers across various regions allows cloud providers
to better utilize renewable energy. In fact, due to the vari-
ability in renewable energy across regions and over time,
the greenness of the power sources of data centers varies by
location and time. This is an opportunity for cloud providers
to exploit this variation of greenness and allocate resources to
the users when and where the amount of available renewable
energy is relatively high. Fortunately, real time data about the

power source mix to data centers is becoming increasingly
available [4], and future predictions are also viable [20], [23].
This provides an opportunity to minimize the carbon footprint
by properly placing and scheduling workloads through a
choice of a data center and a particular time of day.

Due to the limited capacity of computing resources, it
may not be always feasible to serve all the requests while
guaranteeing their Quality of Service (QoS) requirements.
In general, placement and scheduling of workloads, when
limited computational capacity is available, is considered as
an intractable problem. It can be shown that, finding a feasible
solution for this problem is NP-hard, unless P = NP . The
problem becomes even more complicated when, in addition
to finding a feasible solution, an objective function (e.g, total
carbon footprint generated by executing workloads) has to be
optimized.

In this paper, we address the problem of resource con-
strained workload scheduling in cloud systems. We consider
a cloud computing system that is subjected to a batch job
workload. We design a dispatcher which schedules jobs over
a time horizon, in such a way that the total carbon footprint
generated by executing the jobs is minimized. Figure 1a
depicts a high level architecture of the system. The dispatcher
gets the future predictions of carbon intensity of the data
centers, the future predictions of workloads, and accordingly
decides about the order of execution of the jobs that are
currently in the queue. The objective of the dispatcher is to
minimize the overall carbon footprint related to processing
the workload, while satisfying the constraints, namely job
deadlines and computational capacity of data centers. We use
the terms workload and job interchangeably throughout the
paper. Figure 1b shows the output expected from the job
dispatcher. With the increase in carbon intensity, the CPU
utilization decreases, and with the decrease in carbon intensity,
the CPU utilization increases. However, in practice, since
jobs have different arrival times and deadlines and they have
heterogeneous resource requirements, the CPU utilization may
not be the same as in the ideal conditions, in which a fraction
of a job can be executed at any time.



(a)

(b)

Fig. 1: (a) System architecture of job execution. (b) CPU utilization under ideal conditions.

A. Our contribution

We address the workload scheduling problem in cloud
systems, where the objective is to minimize the total carbon
footprint related to processing of the workload. We show that
finding a feasible solution for the problem is NP-hard. Thus,
we develop an LP-based algorithm to solve the problem in
polynomial time. The algorithm guarantees that in case of
feasibility, it finds a schedule with the total carbon footprint
not greater than the optimal value, while the violation of the
constraints on the resources and the execution of the workloads
is bounded by a small factor. The proposed approach provides
fast solutions and makes it suitable for execution in real-time
settings. We perform an extensive experimental analysis to
show the performance of the proposed algorithm.

B. Organization

The rest of the paper is organized as follows. In Section II,
we review the related work. In Section III, we define the op-
timization problem and discuss its complexity. In Section IV,
we present the proposed algorithm for solving the problem.
In Section V, we describe the experimental setup and discuss
the experimental results. We conclude the paper and suggest
possible directions for future work in Section VI.

II. RELATED WORK

In recent years, exploiting renewable energy for computing
received a lot of attention. Many studies have focused on
improving the efficiency of the cooling system in data cen-
ters through designing smart facilities, incorporating thermal
awareness into server provisioning, and workload manage-
ment [8], [17], [26]. Some studies have proposed solutions for
installing data centers close to the renewable energy sites and
alternating cooling supplies [1], [5], [7]. However, it is difficult
to only rely on renewable energy due to its unpredictability
and variability. Fortunately, short-term carbon intensity can be
predicted with high accuracy [9]. Statistics [11], [25] show
that there is a wide variation in carbon intensity of energy
sources by time and location. This reflects the large potential

impact that job scheduling and resource allocation can have
on reducing carbon emission.

Shifting workloads towards the time periods that have low
carbon intensity has been considered as an effective way of
reducing the carbon emissions of data centers [16], [17], [21],
[27]. For example, Google’s Carbon Intelligent Computing
System (CICS) [21] considers the scheduling of batch jobs
to jointly minimize energy consumption and carbon footprint.
The optimizer has as input the carbon intensity forecast over
the next 24 hours and also the prediction of the batch jobs load.
It assumes that jobs are not interactive and can be executed
throughout the day as long as the computational capacity is
preserved. Liu et al., [17] studied shifting flexible workloads
to minimize the total operating costs while maximizing the
revenue as the objective. They consider several hours to
multiple days as the deadline for the jobs. However, these
studies in the area of shifting workloads do not consider the
schedule of each individual job with its specific requirements
when making decision about the execution order.

In contrast to shifting workload, job-based scheduling fo-
cuses on the scheduling of each individual job with its re-
quirements. Energy-aware job scheduling and placement has
been widely studied in the cloud computing environment [6],
[10], [13], [22]. Rocha et al. [22] developed an energy-aware
scheduling algorithm in which jobs are assigned to cluster
nodes based on their scores for each node. The scores of
the jobs for each node is obtained based on the resource
requirements of the job and the performance of the node and
by using a predication model. Cadorel et al. [10] presented a
heuristic algorithm for the workflow scheduling problem with
the aim of minimizing the number of active servers. However,
these studies did not consider the availability of renewable
energy in their decision making. In this paper, we address the
Carbon-aware Job Scheduling Problem(CJSP). Each job is
specified by its resource requirements, execution time, arrival
time, and a deadline. The data center has a limited computa-
tional capacity and the carbon intensity of the power supplied
to the data center may vary over time. We design an LP-based



algorithm for solving CJPS which is fast and suitable for
cloud systems. The algorithm provides approximation bounds
on the objective function and the constraints.

III. CARBON-AWARE JOB SCHEDULING

We address the Carbon-aware Job Scheduling Problem
(CJSP) for a cloud system. We consider a discrete time slotted
system in which a set of jobs N is to be scheduled on a data
center within a time horizon T so that the total carbon footprint
generated by executing the jobs is minimized.

Each job i ∈ N is characterized by the tuple (ai, di, ri, li),
where ai is the arrival time, di is the deadline, ri is the
required amount of the computational resource, and li is the
time needed for executing job i, all are integers. A unit of
time required by job i corresponds to the time for executing
unit-time tasks of the job. When we refer to a task, we mean
a chunk of computation that can be executed in a unit of
time. For the sake of readability, we consider a single type of
computational resource, e.g. CPU, but the formulation can be
extended to multiple types of resources. We allow interruption
of jobs. However, whenever a job is scheduled in a time slot,
it must be executed for the entire duration of the slot.

The data center is characterized by the tuple
(Bt, It, P

idle, Pmax), where Bt is the computational
capacity and It is the carbon intensity in time slot t, and
P idle and Pmax are power consumption parameters of the
data center. We assume that the length of each time slot is
fixed and can be set to a value that satisfies the QoS for
the execution of the job. In the following, we define the
constraints for CJSP, the energy consumption model of the
data center, and the objective of CJSP. The notation we use
in the formulation is provided in Table I.
Scheduling constraints. Each job i requires li time slots.
These time slots are not necessarily consecutive,∑

t∈{ai,...,di}

xit = li ∀i ∈ N , (1)

where xit is a binary variable and xit = 1 if job i is executed
in time slot t and xit = 0 otherwise.
Capacity constraints. The total amount of resources requested
cannot exceed the available capacity of the data center,∑

i∈N
xit · ri ≤ Bt, ∀t ∈ T . (2)

Energy consumption model. We consider the linear model
presented by Fan et al. [14] for tracking the dynamic energy
consumption of the data center. Based on this model, the
computational energy consumption in time slot t includes the
the idle energy consumption and the dynamic energy consump-
tion. Here, we only consider the dynamic energy consumption
of the data center since the idle energy consumption is static
and the schedule of jobs does not have any impact on it. The
dynamic energy consumption in time slot t is proportional to
the CPU utilization and is defined as,

TABLE I: Notation

Notation Description
T Time horizon for executing all jobs
N Set of n jobs
Bt Computational capacity of the data center in time slot t
P idle Basic power consumption
Pmax Peak power consumption
It Carbon intensity of the electricity of the data center in

time slot t
ri Computational resource requested by job i
li Duration time of job i
ai Arrival time of job i
di Deadline to complete job i
f Length of each time slot
T Set of time slots {1, . . . , T}
xit Binary variable, it is 1 if job i is executed in time slot t

and 0, otherwise

Et = (Pmax − P idle) ·
∑

i∈N xit · ri
Bt

· f,

where P idle is the basic power consumption (Watt), Pmax is
the peak power consumption (Watt), and f is the length of
each time slot (second).
Objective. The goal of the CJSP is to minimize the total
carbon footprint generated by executing the jobs in the data
center. It is given by,

min
∑
t∈T

It · (Pmax − P idle) · f ·
∑

i∈N xit · ri
Bt

. (3)

By defining cit = It·(Pmax−P idle)·f ·ri
Bt

and by considering
the above constraints, we formulate the CJSP problem as an
Integer Linear Program (ILP):

ILP-CJSP

min
∑
i∈N

∑
t∈T

cit · xit (4)

subject to: ∑
t∈{ai,...,di}

xit = li, ∀i ∈ N , (5)

∑
i∈N

xit · ri ≤ Bt, ∀t ∈ T , (6)

xit ∈ {0, 1}, ∀i ∈ N ,∀t ∈ T . (7)

The optimal solution obtained by solving CJSP-MIP will
be used in the experimental results section to compare with
the solution obtained by the proposed algorithm for solving
CJSP.

A. Complexity

We show that CJSP is NP-hard by proving that the special
case of the problem is NP-hard. We consider a special case of
CJSP (let us call it S-CJSP) in which all jobs arrive at the
same time (ai = 0) and they have the same deadline di = T .
We assume that the run time of each job is one time slot
(li = 1) and the capacity of the data center in each time slot is
Bt = B. Finding a feasible solution for S-CJSP is equivalent



to the decision problem of minimizing the makespan of N
jobs on T identical parallel machines in which the duration
of each job is ri. The goal is to find an assignment for the
jobs while the maximum completion time on each machine
does not exceed B. The decision problem of the makespan
minimization problem is known as NP-complete (problem SS8
in [15]). Thus, finding a feasible solution for S-CJSP is NP-
complete. This implies that the decision version of S-CJSP
is NP-complete. Thus, S-CJSP is NP-hard and CJSP which
is the general case of S-CJSP is NP-hard as well.

IV. AN APPROXIMATION ALGORITHM FOR CJSP

In Section III, we showed that CJSP is an NP-hard prob-
lem. Thus, finding an optimal solution for CJSP in reasonable
amount of time is infeasible unless P = NP . We develop
an LP-based approximation algorithm called APX-CJSP to
solve CJSP efficiently. We show that if there is a feasible
solution for the problem, APX-CJSP can approximate it with
strong bounds: for a given set of jobs, APX-CJSP finds a
schedule with the total carbon footprint not greater than the
optimal value OPT , while the total resources allocated to jobs
at each time slot does not exceed 2Bt and a maximum of two
tasks of a job can be executed in the same time slot.

We observe that when the run time of all jobs is one (i.e.,
li = 1), CJSP is an assignment problem in which the goal
is to assign each job to a time slot so that the total capacity
in each time slot t does not exceed Bt while the total carbon
footprint is minimized. When li > 1, the problem is more
complicated. Let us consider each unit of time required to
execute a job as one task. Thus, job i has li tasks in which
no two tasks can be executed at the same time slot. We can
consider these tasks as incompatible tasks. Thus, CJSP with
li > 1 is an assignment problem in which conflicting items
cannot be assigned to the same time slot. Based on these
observations, we develop an LP-Based algorithm which is
an extension of an algorithm developed for the Generalized
Assignment Problem (GAP) [24].

An algorithmic description of the proposed APX-CJSP
algorithm is given in Algorithm 1. The input to APX-CJSP
is the information of the set of jobs N and the data cen-
ter. The output of the algorithm consists of the scheduling
matrix X = {xit} and the total carbon footprint CFP . Let
us denote by x̄it, the solution obtained by solving the LP
relaxation of ILP-CJSP in which we replace constraint (7)
with 0 ≤ xit ≤ 1 (Line 1). Based on this solution, we build a
bipartite graph H = (U, V,E), where U and V are two disjoint
sets of nodes, and E is the set of edges connecting the nodes
in U to nodes in V . Let us call the nodes in U task bins
and the nodes in V time slot bins. Along building the graph,
we obtain a fractional matching solution for H stored in {z̄tsik}
(Line 2). Then, the algorithm finds a complete matching {ztsik}
in graph H in which each node in U is exactly assigned to one
node in V (Line 3). Then, based on the complete matching
solution, the algorithm finds a solution for CJSP (Lines 4-
7). The value of xit is defined as the the total number of
matching of task bins of job i to the time slot bins of time

Algorithm 1 APX-CJSP Algorithm

Input: N = {(ai, di, ri, li)}: Set of jobs
Input: {cit}: Carbon footprint generated by jobs

1: {x̄it} ← LP-Solver(N , {cit})
2: (H(U, V,E), {z̄tsik})←Build-Graph({x̄it})
3: {ztsik} ← Complete-Matching(H, {z̄tsik})
4: qt ←

∑
i∈N x̄it ∀t

5: xit ← 0 ∀i, t
6: for each i ∈ N and t ∈ T do
7: xit ←

∑
k∈{1,...li}

∑
t∈T ztsik

8: end for
9: CFP ←

∑
t∈T

∑
i∈N cit · xit

Output: X: Scheduling matrix
Output: CFP : Total carbon footprint =0

slot t. In subsection IV-B, we show that the maximum value of
xit obtained by the algorithm is two, which means a maximum
of two tasks of a job are scheduled at the same time slot. In the
following, we explain the details of building bipartite graph
H and finding the complete matching solution.

For each job i, we consider li task bins, and for
each time slot t, we consider qt = ⌈

∑
i∈N x̄it⌉ time

slot bins. We construct the bipartite graph H , where
one side of the bipartite graph consists of task bins of
the jobs U = {(1, 1), . . . (1, l1), . . . , (N, 1), . . . (N, lN )},
and the other side consists of the time slot bins V =
{(1, 1), . . . (1, q1), . . . , (T, 1), . . . (T, qT )}. The capacity of
each time slot bin (t, s) is one and the bin is packed by
the values of x̄it,∀i ∈ N . On the other hand, since each
task requires one time slot processing, it can be considered
as a bin of capacity one that is packed with the values of
x̄it,∀t ∈ {ai, · · · , di}. We assume that jobs are sorted in
descending order of their resource requirement,

r1 ≥ r2 . . . ≥ rN .

Initially, the task bins and the time slot bins are empty. We
start with an arbitrary time slot t and find the first job for
which x̄it > 0. We place x̄it in time slot bin (t, 1). Then, we
pick the next job with x̄it > 0 and try to put it in (t, 1). If
the remaining capacity of bin (t, 1) is less than x̄it, we put
a fraction of x̄it into time slot bin (t, 1) to make it full, and
put the remaining in the next time slot bin (t, 2). We continue
this procedure for all time slots until all x̄it’s are packed.

We need to also fill the task bins. Let us assume that otsi
is a fraction of x̄it that is assigned to time slot bin (t, s).
To determine how to assign otsi to the task bins, we start
with the first non-full task bin (i, k) and try to pack otsi to
the bin. If the remaining capacity of the task bin is less than
otsi , we put a fraction of otsi to the task bin to make it full.
Then, we pack the remaining fraction of otsi in the next task
bin (i, k + 1). Let us denote by z̄tsik, the fraction of otsi that
is assigned to task bin (i, k). If z̄tsik > 0, we add an edge
with weight cit from node (i, k) to node (t, s). Later, we will
show that {z̄tsik} is a feasible fractional matching for H with



TABLE II: Example: value of parameters

Parameter Value Parameter Value
{a1, a2} {1, 1} {I1, I2, I3} {1, 4, 2}
{d1, d2} {3, 3} f 1
{r1, r2} {4, 2} Pmax 2
{l1, l2} {2, 1} P idle 1
{B1, B2, B3} {5, 5, 5}

maximum objective value OPT . According to [18], from the
fraction matching solution, we can obtain, in polynomial time,
an integer complete matching {ztsik} with objective value not
greater than OPT . In the following, first we give an example
to illustrate the construction of the bipartite graph. Then, we
will discuss the properties of the algorithm.

A. Illustrative Example

Here, we provide a simple example to show how the
algorithm works. We consider a problem instance with two
jobs that are to be scheduled in the data center over time slots
T = {1, 2, 3}. The values of parameters are given in Table II.

Based on the values of the parameters, we obtain matrix
C = {cit} and solve the LP relaxation of ILP-CJSP. Matrix
X̄ is the solution obtained by the LP-relaxation. Matrices C
and X̄ are given by,

C =

(
4
5

16
5

8
5

2
5

8
5

4
5

)
and X̄ =

(
1 0 1
1
2 0 1

2

)
,

respectively.
Based on the values of {x̄it}, time slot t = 1 needs two

bins because q1 = ⌈x̄11+x̄21⌉ = ⌈1+ 1
2⌉ = 2. Time slot t = 2

needs no bin, and time slot t = 3 needs two bins. Figure 2a
shows the bipartite graph H built for this example. In this
figure, the circles show the task bins and the rectangles show
the time slot bins. The weight between each task bin (i, k) and
time slot bin (t, s) is denoted by wts

ik and is set to wts
ik = cit.

We start with time slot t = 1 and pack the first time slot bin
(1, 1) with x̄11 = 1, at the same time we pack the first task
bin of job i = 1 with the same value and add an edge with
weight w11

11 = c11 = 4
5 from task bin (1, 1) to time slot bin

(1, 1). We set z̄1111 = 1. Then, we start packing the second time
slot bin of t = 1 (i.e., (1, 2)) with x̄21 = 1

2 . Simultaneously,
we pack the task bin (2, 1) of job i = 2 with the same value.
We add an edge with weight w12

21 = c21 = 2
5 from task bin

(2, 1) to time slot bin (1, 2) and set z̄1221 = 1
2 . We skip the

second time slot since there is no positive value of x̄i2. Then,
we start packing the bin of time slot t = 3. We pack the time
slot bin (3, 1) with x̄13 = 1, at the same time we pack task
bin (1, 2) with the same value and add an edge with weight
w31

12 = c13 = 8
5 from task bin (1, 2) to time slot bin (3, 1). We

set z̄3112 = 1. Then, We fill time slot bin (3, 2) with x̄23 = 1
2

and fill the task bin (2, 1) with this value z̄3221 = 1
2 . We add an

edge with weight w32
21 = c23 = 4

5 from task bin (2, 1) to time
slot bin (3, 2).

We can easily see that {z̄tsik} is a fractional matching for
graph H since for each task bin (i, k), the total assignment is

exactly one (i.e.,
∑

t∈T
∑

s∈{1...,qt} z̄
ts
ik = 1). The total weight

of the assignments is,∑
i∈N

∑
k∈{1,...,li}

∑
t∈T

∑
s∈{1...,qt}

z̄tsik · wts
ik =

15

5
.

As we stated before, according to [18], if a graph has a
fractional matching, then, there is a complete matching for the
graph with the total weight not greater than the one obtained
by the fractional matching. In Figure 2b, we show a complete
matching ztsik for graph H with the total weight 14

5 .
Now, according to Lines (6-7) of Algorithm 1, and based

on the values of ztsik, we obtain the solution for CJSP. The
value of the scheduling matrix X is

X =

(
1 0 1
0 0 1

)
.

However, this solution violates the capacity constraints for
time slot t = 3 because both jobs i = 1 and i = 2 are executed
in time slot t = 3, resulting in a total resource requirement of
r1+r2 = 6, which is greater than capacity B = 5. In the next
subsection, we will show that this violation is bounded by a
small factor.

B. Properties

Here, we provide approximation bounds for LP-CJSP
algorithm. For a given input, we show that if there is a
feasible solution, the LP-CJSP can approximate it with strong
bounds. LP-CJSP finds a solution of the total carbon footprint
not greater than the optimal value OPT , but violates (i) the
capacity constraints by allowing each time slot to process
jobs for a total capacity of maximum 2B, and (ii) executing
a maximum of two tasks of a job in a single time slot
(i.e.,xit ∈ {0, 1, 2}).

Lemma 1. {z̄tsik} obtained by Build-Graph procedure is a
fractional complete matching in H with the total weight not
greater than OPT .

Proof. To prove {z̄tsik} is a fractional matching, we need to
show that (i) for each time slot bin, the total assignment is
at most one, which is obvious since the algorithm considers
a capacity of one for each bin and fill it by at most total
assignment of one, and (ii) the total assignment on each task
bin is exactly one. From the construction of H , it is easy to
see that,∑

k∈{1,...,li}

∑
t∈T

∑
s∈{1...,qt}

z̄tsik =
∑
t∈T

x̄it = li ∀i ∈ N .

Since in the algorithm there are li task bins and each bin
is not packed unless the previous bins are filled, thus the total
assignment on each task bin is exactly one.

Now, we show that the total weight of this fractional
matching is not greater than OPT . The total weight of the
matching is ∑

i∈N

∑
k∈{1,...,li}

∑
t∈T

∑
s∈{1...,qt}

z̄tsik · cit.



(a) (b)

Fig. 2: Example: (a) Bipartite graph H with fractional matching z̄tsik. (b) Bipartite graph H with complete matching ztsik.

Since
∑

k∈{1,...,li}
∑

s∈{1...,qt} z̄ik = x̄it, the total weight of
the fractional matching is∑

i∈N

∑
k∈{1,...,li}

∑
t∈T

∑
s∈{1...,qt}

z̄tsik · cit =
∑
i

∑
t

x̄it · cit,

which is the objective value obtained by LP relaxation of
CJSP. Since the objective value of LP relaxation is a lower
bound of the optimal solution, we can conclude that the total
weight of the fractional matching is at most OPT .

Lemma 2. For a fractional matching z̄stik in bipartite graph
H , there is an integral complete matching zstik in H with the
objective value not greater than that of the fractional matching
solution (Theorem 11.1 in [28]).

Theorem 1. APX-CJSP algorithm obtains solution {xit}
with objective value not greater than the optimal value OPT ,
but in each time slot at most 2Bt computational resource is
required to complete the jobs and the number of tasks assigned
to a single time slot are at most 2 (i.e., xit ∈ {0, 1, 2}).

Proof. According to Lemma 1 and Lemma 2, ztsik is a complete
matching for graph H with objective value,∑

i∈N

∑
k∈{1,...,li}

∑
t∈T

∑
s∈{1...,qt}

ztsik · cit ≤ OPT.

On the other hand, according to Line 7 of Algorithm 1,
xit =

∑
k∈{1,...li}

∑
s∈{1,...,qt} z

ts
ik. Thus, the total carbon

footprint obtained by the algorithm is,∑
i∈N

∑
t∈T

xit · cit =
∑
i∈N

∑
t∈T

∑
k∈{1,...,li}

∑
s∈{1...,qt}

ztsik ≤ OPT.

Now, we discuss the violations of solution {xit} on the con-
straints of ILP-CJS. Consider task bins that can be matched
to time slot bin (t, s) (i.e., the task bins with z̄tsik > 0). Let
rmax(t,s) denote the maximum resource requirement among
these tasks. If we consider integral complete matching {ztsik},
the total load At assigned to time slot t is bounded by,

At ≤
∑

s={1,...,qt}

rmax(t,s) ∀t ∈ T . (8)

On the other hand, in the fractional matching {z̄tsik}, since
we only start the next time slot bin when we have completely
fill the previous ones, we will have,∑

i∈N

∑
k∈{1,...,li}

z̄tsik = 1 ∀t ∈ T , s ∈ {1, . . . , qt − 1}. (9)

Furthermore, since jobs are sorted in decreasing order of
their resource requirement,

rmax(t,s+1) ≤ ri ∀t ∈ T , s ∈ {1, . . . , qt − 1}, (10)
i ∈ N , k ∈ {1, . . . , li} |z̄tsik > 0.

Thus, based on Equations (9-10), we will have,

rmax(t,s+1) ≤
∑
i∈N

∑
k∈{1,...,li}

z̄tsik · ri ∀t ∈ T , (11)

s = {1, . . . , qt − 1}.

Therefore,

∑
s∈{1,...,qt−1}

rmax(t,s+1) ≤
∑

s∈{1,...,qt−1}

∑
i∈N

∑
k∈{1,...,li}

z̄tsik · ri

≤
∑
i∈N

ri ·
∑

k∈{1,...,li}

∑
s=1∈{1,...,qt−1}

z̄tsik.

Since
∑

k∈{1,...,li}
∑

s∈{1,...,qt} z̄
ts
ik = x̄it, we will have,∑

s∈{1,...,qt−1}

rmax(t,s+1) ≤
∑
i∈N

ri · x̄it.

On the other hand, x̄it is a feasible solution for the LP
relaxation of CJSP. Thus, we have

∑
i∈N ri · x̄it ≤ Bt.

Consequently, ∑
s∈{1,...,qt−1}

rmax(t,s+1) ≤ Bt.

Furthermore for each job i and each time slot t we assume
that ri ≤ Bt. Thus, rmax(t,s) ≤ Bt and for the total load on
time slot t we will have,

At ≤ rmax(t,s) +

kt−1∑
s=1

rmax(t,s+1) ≤ 2Bt.

Thus, the maximum resources assigned to a time slot t is
bounded by 2Bt.



(a) (b) (c)

Fig. 3: Workload characteristics distribution: (a) Arrival time. (b) Run time. (c) CPU requirement.

Now, we show that the number of tasks of a job assigned to
a time slot is at most 2. For a time slot t and for a job i, the
value of x̄it is at most one. Each time slot bin has capacity
of 1 and is filled once the previous bins are completely filled.
Thus, the value of x̄it is assigned to at most to consequent
time slot bins. This means that at most two bins of time slot
t may have edge connection to the task bins of job i. Thus,
at most two tasks of a job i can be matched to the same time
slot.

V. EXPERIMENTAL RESULTS

In this section, we investigate the performance of the
proposed scheduling algorithm, APX-CJSP, by performing an
extensive experimental analysis. We compare the performance
of the algorithm against that of the optimal solution obtained
by solving ILP-CJSP. We analyze the quality of solutions
and the running times of the algorithm for problem instances
of different sizes under various settings. In the following,
we describe our experimental setup and then analyze the
experimental results.

A. Experimental Setup

Computing setup. a batch workload trace recently released by
Alibaba [2] to characterize the workload of the data center. The
trace is sampled from one of the Alibaba production clusters
in a periods of eight days. By analyzing the workload, we
observe that more than 91% of the jobs are short, with running
time less than 30 minutes. Short-running jobs do not usually
tolerate long delay and they are expected to be finished in a
timely manner. Thus, their impact on reducing carbon emission
may not be high as carbon intensity usually does not change
quickly [27]. Thus, in our experiments, we only consider long-
running jobs with run time between 30 minutes and 5 hours
because they usually have more flexibility on execution time.

We set the length of each time slot to 600 seconds (i.e.,
f = 600). We have investigated various values for the length
of time slots; but the behavior of the scheduling algorithm does
not change over various values of f . Thus, due to the limited
space, we only present the results for f = 600. We consider
a time horizon of 24 hours (144 time slots) for scheduling
jobs that arrived in the first 20 hours (the first 120 time slots).
In Figure 3, we plot the characteristics of long-running jobs.
Figure 3a shows the histogram of the frequency distribution
(%) of arriving jobs in each time slot. Figure 3b shows the

the histogram of the frequency distribution (%) of jobs for
various run times. Here, we observe that a high percentage
of jobs (about 48%) have running time between 30 minutes
and 1 hour. Figure 3c shows the histogram of the frequency
distribution (%) of jobs for various CPU requirement. Based
on these distributions, we generate our workload. In our
experimental setup, the number of jobs arriving to the system
varies between 100 to 6000. The characteristics of these jobs,
such as arrival time, run time, and CPU requirement are
determined based on these distributions. The deadline of jobs
is calculated based on the slowdown factor α. For example,
for job i, the deadline is di = ai +α ∗ li. In our experimental
analysis, we investigate the impact of various values of α on
the carbon emission of the data center.

To estimate the power consumption parameters of the data
center (i.e., pidle, pmax), we consider Gen 2 servers and set
P idle = 480W, Pmax = 1000W . We get the carbon intensity
information of IBM Boulder data center from InfluxDB [3] for
a period of 24 hours and use it as the input for the APX-CJSP
algorithm.
Performance metrics. The performance of the proposed
algorithm is evaluated by considering several performance
metrics such as CPU utilization, execution time, CFP ratio,
CV ratio, and TAV . In the following, we elaborate on each
of these metrics.

CPU utilization in time slot t is denoted by ut and defined
as the ratio between the total resources allocated to the jobs
and the capacity of the data center in time slot t,

ut =

∑
i∈N ri · xit

Bt
.

What we expect from our scheduling algorithm is to adjust
the CPU utilization based on the carbon intensity of the data
center.

Capacity violation ratio (CV ) is defined as the maximum
CPU utilization over all time slots,

CV = max
t∈T
{ut}.

Our scheduling algorithms guarantees that the value of CV
ratio does not exceed two.
CFP ratio is defined as the ratio between the total carbon

footprint obtained by AXP-CJSP and the total carbon foot-



(a) (b)

(c) (d)

Fig. 4: APX-CJSP vs. ILP-CJSP: (a) Execution time. (b) CFP ratio. (c) TAV . (d) CV ratio.

print obtained by solving ILP-CJSP,

CFP =

∑
i∈N

∑
t∈T cit · xit∑

i∈N
∑

t∈T cit · x∗
it

,

where x∗
it is the solution obtained by solving ILP-CJSP and

xit is the solution obtained by APX-CJSP.
Task assignment violation or TAV is defined as the maxi-

mum number of tasks of a job executed in parallel,

TAV = max
i∈N ,t∈T

{xit}.

As we stated in problem definition, at most one task of a job
can be executed in a time slot. APX-CJSP may violate this
constraint; but it guarantees that at most two tasks of the same
job are executed in the same time slot.

For each type of problem instance, we execute APX-CJSP
and ILP-CJSP algorithms for ten instances. The values of
the performance metrics are the average value of the ten
executions. APX-CJSP and ILP-CJSP are both implemented
in C and the experiments are conducted on an Intel 2.3 GHz
Core i9 with 64 GB RAM system. For solving ILP-CJSP
and also the LP relaxation of ILP-CJSP, we use the CPLEX
12.8 solver provided by IBM ILOG CPLEX optimization
studio [12].

B. Experimental Analysis

We perform an extensive experimental analysis for two
classes of problem instances. First, we present the experimen-
tal results for the small size instances where each instance
consists of 100 jobs. Our goal is to evaluate the performance of
APX-CJSP compared to the exact solution obtained by using
the CPLEX to solve ILP-CJSP. The second class of instances
consists of large size instances in which the number of jobs
varies between 100 and 6000. For these instances, CPLEX
cannot solve the problem in a reasonable amount of time. Our

aim for this class of instances is to analyze the scalability of
APX-CJSP.

Small scale instances. Here we analyze the performance
of APX-CJSP for a fixed number of jobs. We compare
the solutions obtained by APX-CJSP to the exact solution
obtained by using the CPLEX to solve ILP-CJSP. Due to the
large execution time of CPLEX to obtain the optimal solution
for large size instances, here we only consider relatively small
size instances. We fix the number of jobs to 100 and consider
various capacities for the data center, in such a way that the
average load of the data center varies between 11% and 75%.
To define the deadline, we consider the same slowdown value
for all jobs (α = 4). We investigate the impact of the load
on the performance of the system. In Figure 4a, we plot the
execution times obtained by APX-CJSP and ILP-CJSP using
a logarithmic scale. The execution times of ILP-CJSP are
several orders of magnitude higher than the execution times
of APX-CJSP algorithm for all values of load. The execution
times of our proposed algorithm are under 15 millisecond in
all cases making it very suitable for deployment in real cloud
systems. We observe a slight increase in the execution time
of APX-CJSP with the increase of load, but this increase
seems reasonable. In fact when the load is higher, the available
capacity is more limited and the problem of finding a good
solution becomes more complicated. For this reason, both ILP
solver and LP solver (which is a part of APX-CJSP algorithm)
need more time to obtain a solution. Figure 4b shows the CFP
ratio for various values of the load. We observe that in all cases
the CFP ratio is less than one (as it is guaranteed by APX-
CJSP algorithm). Also in all cases CFP ratio is above 0.99
indicating the total carbon footprint obtained by APX-CJSP
is very close to the optimal solution. We also observe that
as load increases, CFP ratio decreases. The reason behind
this is that, with more restriction on the capacity, obtaining a
feasible solution becomes more complicated and APX-CJSP



(a) (b) (c)

Fig. 5: Performance vs. number of jobs: (a) Execution time. (b) CV ratio. (c) TAV .

experiences more violations on task assignment and capacity
violation (See Figure 4d, Figure 4c).
Large scale instances. Here we investigate the scalability
of APX-CJSP to the number of jobs. We consider two
settings for the data center. In the first setting we consider
a relatively large capacity (resulting in a low load on the data
center), while in the second setting we consider more restricted
capacity (resulting in a moderate load on the data center).
Under each setting, we investigate the impact of the number of
jobs on the performance of APX-CJSP. We vary the number
of jobs between 100 to 6000 and adjust the capacity of the
data center accordingly to keep the average load at a certain
level. For the first setting, we keep the average load around
32%, while in the second setting we keep the average load
around 68%. In Figure 5a, we plot the average execution
time of APX-CJSP for various number of jobs. We observe
that with the increase in the number of jobs, the execution
time of the algorithm increases in a polynomial fashion. For
example, for the case of N = 100, the execution time is about
19 milliseconds while for n = 6000, the execution time is
about 2,709 milliseconds. Furthermore, we observe that the
execution time of APX-CJSP for problem instances with the
moderate load is higher than that of the low load. The reason
is that with the increase of the load, the problem becomes
more complicated and it takes more time for LP-solver to
find the optimal fractional solution. Another observation from
this figure is that, for all instances, the execution time of
the algorithm is less than three seconds, which is negligible
compared to the run time requirement of the jobs.

Figure 5b shows the impact of the number of jobs on the
CV ratio. We observe that as the number of jobs increases,
this ratio decreases. The reason is that packing higher number
of jobs in a large capacity is more possible rather than packing
smaller number of jobs in a relatively small capacity. Thus,
when the capacity is relatively large, a higher percentage of
jobs can be packed within the given capacity and a lower
capacity violation occurs. Another observation is that in the
case of moderate load, the CV violation is higher than that
of low load. The reason is that when the load is low, a
higher capacity is available for packing the jobs. Thus, a lower
violation rate occurs. We observe a similar behaviour for TAV
as illustrated in Figure 5c.

Next we analyze the impact of slowdown on the CPU

utilization. For this purpose, we consider a large problem
instance with 2000 jobs and set the average load to 65%.
Figure 6a shows the CPU utilization in each time slot when
α = 4. We observe that APX-CJS tries to adjust the CPU
utilization based on the carbon intensity: the CPU utilization
is relatively high when the carbon intensity of the data center
is low and the CPU utilization goes down when the carbon
intensity is high. However, due to the scheduling and deadline
constraints, it cannot always behave in the opposite direction
of carbon intensity. Figure 6b shows the CPU utilization for
α = 10. For this case, we observe that since jobs have more
flexibility for execution, the CPU utilization is mostly in the
opposite direction of carbon intensity.

VI. CONCLUSION

In this paper, we proposed an LP-based approximation
algorithm for carbon-aware workload scheduling problem in
cloud systems. The proposed algorithm guarantees strong
approximation bounds on the constraints and the objective
function. We performed an extensive experimental analysis
to evaluate the performance of the proposed algorithm. The
results showed that the solutions obtained by the proposed
algorithm are near optimal solutions with small feasibility vio-
lations. Furthermore, the small execution time of the algorithm
makes it a promising approach for real world cloud systems.
In our future research, we plan to develop a framework for ad-
dressing both the placement and scheduling of the workloads
over multiple geographically distributed data centers. We plan
to take into account the uncertainties in the arrival time of the
workloads and the carbon intensity of the data centers in the
design of the framework.

REFERENCES

[1] https://www.cultofmac.com/191838/apple-expands-n-c-solar-farm-to-
make-data-center-use-100-renewable-energy . Accessed: 2022-02-21.

[2] Alibaba inc. 2018. alibaba production cluster data v2018.
https://github.com/alibaba/clusterdata/tree/v2018 .

[3] Influxdb. https://www.influxdata.com .
[4] U.s. energy information administration. https://www.eia.gov/. Accessed:

2022-01-30.
[5] Yahoo! compute coop: Next generation passive cooling design for data

centers. https://www.energy.gov/eere/amo/yahoo-compute-coop-next-
generation-passive-cooling-design-data-centers . Accessed: 2022-02-21.

[6] Z. Abbasi, G. Varsamopoulos, and S. K. S. Gupta. Tacoma: Server
and workload management in internet data centers considering cooling-
computing power trade-off and energy proportionality. ACM Trans.
Archit. Code Optim., 9(2), June 2012.



(a) (b)

Fig. 6: CPU utilization vs. slowdown: (a) α = 4. (b) α = 10.

[7] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper. Free lunch:
Exploiting renewable energy for computing. In 13th Workshop on Hot
Topics in Operating Systems (HotOS XIII), 2011.

[8] C. Bash, C. D. Patel, and R. K. Sharma. Dynamic thermal manage-
ment of air cooled data centers. In Thermal and Thermomechanical
Proceedings 10th Intersociety Conference on Phenomena in Electronics
Systems, 2006. ITHERM 2006., pages 8–pp. IEEE, 2006.

[9] N. D. Bokde, B. Tranberg, and G. B. Andresen. Short-term co2
emissions forecasting based on decomposition approaches and its impact
on electricity market scheduling. Applied Energy, 281:116061, 2021.

[10] E. Cadorel, H. Coullon, and J. Menaud. A workflow scheduling
deadline-based heuristic for energy optimization in cloud. In 2019
International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 719–728, 2019.

[11] D. S. Callaway, M. Fowlie, and G. McCormick. Location, location,
location: The variable value of renewable energy and demand-side
efficiency resources. Journal of the Association of Environmental and
Resource Economists, 5(1):39–75, 2018.

[12] I. I. Cplex. V12. 8: User’s manual for cplex. International Business
Machines Corporation, 46(53):157, 2009.

[13] Z. Dong, W. Zhuang, and R. Rojas-Cessa. Delayed best-fit task
scheduling to reduce energy consumption in cloud data centers. In
2019 International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 729–736, 2019.

[14] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a
warehouse-sized computer. ACM SIGARCH computer architecture news,
35(2):13–23, 2007.

[15] M. R. Garey and D. S. Johnson. Computers and intractability, volume
174. freeman San Francisco, 1979.

[16] L. Lin, V. M. Zavala, and A. A. Chien. Evaluating coupling models
for cloud datacenters and power grids. In Proceedings of the Twelfth
ACM International Conference on Future Energy Systems, e-Energy ’21,
pages 171–184, New York, NY, USA, 2021. Association for Computing
Machinery.

[17] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah,
and C. Hyser. Renewable and cooling aware workload management for
sustainable data centers. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Measurement
and Modeling of Computer Systems, pages 175–186, 2012.

[18] L. Lovász and M. D. Plummer. Matching theory, volume 367. American
Mathematical Soc., 2009.

[19] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey. Recalibrating
global data center energy-use estimates. Science, 367(6481):984–986,
2020.

[20] X. Qing and Y. Niu. Hourly day-ahead solar irradiance prediction using
weather forecasts by lstm. Energy, 148:461–468, 2018.

[21] A. Radovanovic, R. Koningstein, I. Schneider, B. Chen, A. Duarte,
B. Roy, D. Xiao, M. Haridasan, P. Hung, N. Care, et al. Carbon-aware
computing for datacenters. arXiv preprint arXiv:2106.11750, 2021.

[22] I. Rocha, C. Göttel, P. Felber, M. Pasin, R. Rouvoy, and V. Schiavoni.
Heats: Heterogeneity-and energy-aware task-based scheduling. In 2019

27th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pages 400–405, 2019.

[23] N. Sharma, P. Sharma, D. Irwin, and P. Shenoy. Predicting solar
generation from weather forecasts using machine learning. In 2011
IEEE international conference on smart grid communications (Smart-
GridComm), pages 528–533. IEEE, 2011.

[24] D. B. Shmoys and É. Tardos. An approximation algorithm for the gener-
alized assignment problem. Mathematical programming, 62(1):461–474,
1993.

[25] M. P. Thind, E. J. Wilson, I. L. Azevedo, and J. D. Marshall. Marginal
emissions factors for electricity generation in the midcontinent iso.
Environmental science & technology, 51(24):14445–14452, 2017.

[26] Z. Wang, A. McReynolds, C. Felix, C. Bash, C. Hoover, M. Beitelmal,
and R. Shih. Kratos: Automated management of cooling capacity in
data centers with adaptive vent tiles. In ASME International Mechanical
Engineering Congress and Exposition, volume 43833, pages 269–278,
2009.

[27] P. Wiesner, I. Behnke, D. Scheinert, K. Gontarska, and L. Thamsen.
Let’s Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon
Emissions in the Cloud, pages 260–272. Association for Computing
Machinery, New York, NY, USA, 2021.

[28] D. P. Williamson and D. B. Shmoys. The design of approximation
algorithms. Cambridge university press, 2011.


