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Abstract
We address the problem of energy-aware optimization of specula-
tive execution in vehicular edge computing systems, where multiple
copies of a workload are executed on a number of different nodes
to ensure high reliability and performance. The objective is to min-
imize the energy consumption over multiple time periods while
minimizing the latency for each of the periods. We prove that the
problem is NP-hard and propose a greedy algorithm to solve it in
polynomial time. We evaluate the performance of the proposed
algorithm by conducting an extensive experimental analysis. The
experimental results indicate that the proposed algorithm obtains
near optimal solutions within a reasonable amount of time.

CCS Concepts • Networks →Mobile networks;

Keywords Vehicular edge computing, energy consumption, spec-
ulative execution.
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1 Introduction
Modern vehicles employ several sensors and embedded systems
that collect data and provide new services necessary for improv-
ing the performance of the engine and infotainment system (e.g.,
navigation, video streaming), reducing emissions, and assisting the
driver by processing camera images (e.g., recognize the road speed
limit). These workloads need a substantial amount of processing
power in order to meet their performance requirements. Offloading
workload to remote cloud-based computing systems is often lim-
ited by a high communication latency, which significantly degrades
performance. In order to solve this problem, computational nodes
have been moved from the data centers to the edge of the cloud,
forming a Vehicular Edge Computing (VEC) system. In a VEC sys-
tem, computational nodes can be deployed in cell towers, Road-Side
Units (RSUs), and within connected vehicles so that local data and
workloads can be processed with a much lower latency compared to
using the cloud nodes. Communication among vehicles and RSUs
are based on DSRC technology [1], which is characterized by a
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relatively low energy consumption and latency. On the other hand,
these edge nodes have often limited computing capacities and en-
ergy budgets (e.g., in electric vehicles). A typical GPU for smart
vehicles such as the Nvidia Drive Px 2 can consume up to 80Wh [10]
while the energy consumption of an electric vehicle such as the
Tesla Model 3 is on average 240Wh/mile [11]. Thus, for every mile
worth of energy consumed by the vehicle, the computing system
can consume 0.33 miles worth of energy. These characteristics make
the problem of ensuring good performance while minimizing the
energy consumption in VEC systems a challenging task.

Some of the existing challenges in VEC systems have been ad-
dressed from different perspectives and using different methods.
Zheng et al. [18] addressed the variability of the resources in a
VEC system. Yu et al. [16] studied the mobility of vehicles and
proposed a VM migration mechanism. A variety of algorithms
have been also proposed to efficiently offload workload to nearby
service providers for reducing the energy consumption of mobile
devices [9, 14]. However, the above solutions do not consider that
multiple service requesters may interfere with each other when
accessing shared service providers, which may unexpectedly in-
crease the overall energy consumption and latency. Several studies
[7, 12, 15, 17] consider the interference problem for opportunistic
mobile cloud computing. However, most of those solutions have a
single point of failure, i.e., if the selected service provider fails, the
workload has to be migrated or offloaded again, which increases the
latency. To solve this problem, various research studies [5, 13, 16, 19]
have proposed the use of speculative execution to execute multiple
copies of a workload on different nodes. However, to the best of our
knowledge, none of the above solutions consider the optimization
of energy consumption when employing speculative execution in
VEC systems.

In this paper, we propose a replica manager algorithm, which
is an energy-aware optimization algorithm for the speculative ex-
ecution, which minimizes the workload execution time and the
energy consumption of electric vehicles in VEC systems. Our main
intuition is that connected vehicles in close proximity can help each
other to reduce their computational energy consumption while main-
taining the desired Quality of Service (QoS). In particular, energy
savings can be achieved because of the discrete characteristics of
the power management in computing systems: given a certain set-
ting of computational power and QoS for a provider vehicle, there
could be leftover computing capacity under a similar power/energy
budget. This redundant computing capacity can be used to host
workloads of requester vehicles with minimal impact on the energy
consumption of the provider, so that requesters can achieve high
energy savings. Similarly, those providers can then save energy by
becoming requesters at a later time.

Figure 1 shows a speculative execution scenario in a VEC system.
The replica manager runs on a local RSU, which manages all the
electric vehicles in its close proximity. In this scenario, (1) vehicle A
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Figure 1. Speculative Execution in VEC Systems.

is a service requester while vehicles B and C are service providers.
(2) The replica manager coordinates the replicas deployment so that
vehicle A can save energy. (3)When one of the providers returns the
computation result to A (e.g., vehicle C), (4) the other providers stop
the computation and wait for other workloads. In return, vehicle A,
at a later time, will host the workload of vehicles B and C to help
them lower their energy consumption. Thus, all the vehicles can
save energy over a sufficiently long period of time.

Our main contributions are as follows: (1) develop a Mixed Inte-
ger Linear Programming (MILP) formulation of the energy-aware
speculative execution problem in VEC systems, (2) prove that the
problem is NP-hard, (3) design an efficient algorithm to solve it,
and (4) evaluate the performance of the proposed algorithm. Our
experiments show that proposed algorithm achieves near-optimal
performance and requires a very small execution time.

The rest of the paper is organized as follows. Section 2 defines the
problem and studies its complexity. Section 3 describes the proposed
algorithm. Section 4 discusses the experimental results. Section 5
concludes the paper and suggests possible future directions.

2 Speculative Execution Problem
In this section, we formulate the Speculative Execution Problem (SEP)
in VEC systems. We assume that cell towers run a cell partitioner
that periodically runs at a coarse time scale to assign vehicles within
its cell to edge-cells managed by RSUs so that each vehicle remain
in the assigned edge-cell for most of the cell partitioner time pe-
riod. We also consider that, within each edge-cell, the local RSU
periodically runs 1) at a finer time scale than the cell partitioner, an
energy manager, which decides the vehicles’ state (i.e., requester or
provider) and the number of replicas for each requester’s workload,
2) at a finer time scale than the energy manager, a replica manager,
which determines the exact allocation of the selected requesters’
workload replicas on the selected providers. These three tasks run
at different time scales and can be treated as three separate prob-
lems. In this paper, we focus on the design of the replica manager
and leave as future work the design of the energy manager and cell
partitioner. Note, the cell partitioner takes the vehicles’ speed into
consideration to form edge-cells, thus we can assume that vehicles
will remain in the assigned edge-cell during multiple replica man-
ager periods. In addition, the replica manager and energy manager
are distributed across RSUs and thus the above described structure
can handle vehicles moving across edge-cells.

Given the above described architecture, the inputs of the replica
manager are a fixed set ofM providers and N requesters, the aver-
age distances between requesters and providers during the entire
duration of a replica manager period, and the workload characteris-
tics. Requester i’s workload is denoted by {di ,Ki ,Ri }, where di is

Table 1. Notation
Notation Description
N Number of of requests.
M Number of edge providers.
Q Number of resource types.
Ki Set of replicas of request i .
di Size of the request i .
rhi Amount of resource of type h needed for the request i
li j Distance between requester i and provider j .
bi j Average bandwidth between requester i and provider j .
τi j Time needed to offload request i on provider j .
θi j Time needed to run request i on provider j .
Chj Capacity of provider j for resource of type h.
Bj Power budget of provider j .
ci j Time to run a unit of request i on provider j .
xi jk Binary decision variable associated with the

allocation of the k th replication of request i to provider j

the size of the task that is to be offloaded, Ki is the number of repli-
cas, and Ri = {r1i , . . . rQi } denotes the resources requested for the
Q available resource types. We consider three main resources (i.e.,
Q = 3) indexed by h: CPU time (h = 1), memory space (h = 2), and
storage space (h = 3). Each provider j has a limited capacityChj for
each resource type. Thus, the amount of type-h resources requested
from provider j should not exceed the provider’s capacity:

N∑
i=1

Ki∑
k=1

rhixi jk ≤ Chj (1)

where xi jk is a binary decision variable that is 1 if the kth replica
is assigned to provider j, and 0 otherwise. We assume that the
providers’ CPU time capacity is equivalent to the replica manager’s
period, i.e., all the workload must finish by the end of each period.

The power consumption of computing systems is mainly charac-
terized by two components, the offload power (due to the wireless
interface) and the computational power. We assume to have a mech-
anism similar to that proposed in [2, 3] to analyze the workloads and
find the ones that are worthy to be offloaded, i.e., those for which
the computational power is much higher than the offload power.
Thus, we consider only the computational power consumption of
the vehicles, which is mainly influenced by the CPU utilization [8].
Thus, the power consumption of provider j is:

Pj = P idlej + ujπj (2)

where P idlej is the idle power consumption,uj is the CPU utilization,
and πj is the peak power consumption when the CPU is fully
utilized. The total power consumption of provider j should not
exceed its power budget, Bj , which is estimated by the RSU to
ensure energy savings when the providers will become requesters.
The CPU utilization uj can be calculated as the ratio of the total
CPU time requested from provider j (i.e.,

∑N
i=1

∑Ki
k=1 r1ixi jk ) and

the CPU capacity C1j of provider j. Using this in Equation 2, we
relate the decision variables xi jk and the provider j’s power budget:

P idlej + πj

∑N
i=1

∑Ki
k=1 r1ixi jk

C1j
≤ Bj (3)

The total time needed to execute a request on a provider’s node is
calculated as the sum of the offload time and the computation time.
The time τi j needed to offload request i to provider j is calculated
as the ratio of the request size di and the average bandwidth bi j ,
i.e., τi j = di

bi j
. In particular, the average bandwidth bi j between

requester i and provider j is inversely proportional to the distance
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between each other li j , i.e., bi j =
µ
li j
, where µ is a constant esti-

mated parameter. The time θi j to run request i on provider j is
calculated based on the requested CPU time r1i and an estimated
parameter ci j , which depends on the type of request (e.g., CPU
bounded, IO bounded), load on the provider, and the CPU clock
rate of the provider. Specifically, θi j = r1i · ci j . Thus, the objective
function of SEP is the total execution time of the N requests on
theM providers:

N∑
i=1

M∑
j=1

Ki∑
k=1

α j (τi j + θi j )xi jk (4)

where α j is the fairness ratio, which ensures a fair usage of the
providers’ energy and resources. In the first replica manager period,
α j = 1 for j = 1, . . . ,M , so that we give the same weight to each
provider. For a subsequent period t , α j is calculated based on the
history of normalized resource load distribution A

(t )
j , i.e., the ratio

between the total resources allocated on provider j and the total
resources allocated to theM providers until period t − 1. Thus:

α j =
A(t )j∑M
j=1 A

(t )
j

A
(t )
j = A

(t−1)
j +

∑Q
h=1

rhi∑M
j=1 Chj

r
(t−1)
hi x

(t−1)
i jk

The fairness ratio controls the load on each provider by weighting
their execution time in the optimization objective. In practice, a
provider that has had a higher request load in the previous peri-
ods will have a higher α and thus a longer execution time in the
optimization objective than another provider that has received a
lower request load. Thus, the provider with the high α value will
likely receive less workload than the provider with the lower α
value. Table 1 summarizes the notation used so far.

Next, we formulate the energy-aware speculative execution prob-
lem in VEC systems as an MILP (i.e., SEP-MILP):

Minimize
N∑
i=1

Ki∑
k=1

M∑
j=1

α j (τi j + θi j )xi jk (5)

subject to:
Ki∑
k=1

xi jk ≤ 1 ∀i,∀j (6)

M∑
j=1

xi jk = 1 ∀i,∀k (7)

N∑
i=1

Ki∑
k=1

rhixi jk ≤ Chj ∀j,∀h (8)

P idlej + πj

∑N
i=1

∑Ki
k=1 r1ixi jk

C1j
≤ Bj ∀j (9)

xi jk ∈ {0, 1} ∀i,∀j,∀k (10)

Constraints (6) ensure that Ki replicas of a request are executed
by Ki different providers. Constraints (7) ensure that each replica
of request i is allocated. Constraints (8) and (9) ensure that the
providers’ resource capacity and power budget are not exceeded.
Constraints (10) guarantee the integrality of the decision variables.

Algorithm 1 G-SEP

Input: User requests: {di , Ki , Ri }, i = 1, . . . , N
Providers capacity: C = {C1, . . . , CM }, Cj = {C1j , . . . , CQj }

1: X ← 0
2: X̄ ← 0
3: C̄ ← C
4: Sort requests in non-increasing order of Ki

∑Q
h=1

rhi∑M
j=1 Chj

5: for i = 1, . . . , N do
6: count ← 0
7: Sort providers in non-decreasing order of α j (τi j + θi j )
8: for k = 1, . . . , Ki do
9: for j = 1, . . . , M do
10: if available(C̄j , i) then
11: x̄i jk ← 1
12: count ← count + 1
13: for h = 1, . . . , Q do
14: C̄hj ← C̄hj − rhi
15: break;
16: if count = Ki then
17: for j = 1, . . . , M do
18: for k = 1, . . . , Ki do
19: xi jk ← x̄i jk
20: for h = 1, . . . , Q do
21: Chj ← C̄hj
22: else
23: for h = 1, . . . , Q do
24: C̄hj ← Chj
Output: X

2.1 Complexity of SEP
Here we prove that SEP is an NP-hard problem, that is, it is not
solvable in polynomial time, unless P = NP. For this purpose, we
show that SEP has a known NP-hard problem as a special case.

Theorem 2.1. SEP is NP-hard.

Proof. Let us consider a special case of SEP in which there is only
one type of resources (Q = 1) and only one replica for each request
(Ki = 1). We also consider that the capacity of all providers is the
same (Cj = C), and that each provider has an unlimited power
budget. We call this problem SEP-SR in which SR stands for single
replica. Note that since the indexes k and h have a fixed value
(k = 1, h = 1), for the sake of simplicity, we ignore them from the
parameters and variables.

To prove he theorem, we show that even finding a feasible so-
lution for SEP-SR is NP-hard. In fact, finding a feasible solution
for the SEP-SR problem is equivalent to solving the problem of
minimizing the makespan of a set of jobs {1, . . . ,N } on a set of
parallel identical machines {1, . . . ,M}. Each job must be run on a
single machine (

∑M
j=1 xi j = 1) for a certain amount of time, ri . The

objective is to assign jobs to machines such that the makespan of
each machine does not exceedC (i.e.,

∑N
i=1 rixi j ≤ C). This problem

is a well-known NP-hard problem [6]. Therefore, even finding a
feasible solution for SEP-SR is NP-hard. Thus, we can conclude that
SEP which is the general case of SEP-SR is NP-hard. □

3 A greedy algorithm for SEP
Because SEP is NP-hard, it is not possible to find a feasible solution
in polynomial time unless P = NP . Thus, we designG-SEP, a greedy
algorithm that operates in two steps to solve SEP in polynomial
time. First, G-SEP sorts request loads and providers. Second, it
allocates replicas on providers one by one. In particular, to ensure
a high number of allocated requests, G-SEP sorts the requests in
non-increasing order of their normalized loads. Then, starting from
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the request with the highest load, it tries to allocate each request
one by one by finding the first provider that has enough capacity
to host the request, starting from the provider that has the lowest
weighted (i.e., for fairness) execution time. These steps allow to
lower the overall requests’ response time and to ensure a fair load
distribution across providers. Next, we explain the details of G-SEP
and then study its complexity.

G-SEP is given in Algorithm 1. The input of G-SEP is the vector
of the requests and the capacity of the providers. The output is the
allocation matrix X = {xi jk }. First, G-SEP initializes the allocation
matrix and the auxiliary matrices X̄ and C̄ (Lines 1-3). Matrices X̄
and C̄ are used to store the temporary values of X and C . G-SEP
sorts the requests in non-increasing order of their normalized loads
(line 4). The request for each type of resource is normalized with
respect to the total capacity of that resource type. Then, G-SEP
iteratively allocates resources to the requests. Starting from the re-
quest with the highest load, it sorts the providers in non-decreasing
order of the weighted execution time (Line 7) to minimize the to-
tal communication and computation time while guaranteeing a
fair allocation. Based on the sorted list of the providers, it assigns
replicas one by one to providers. For each provider, it calls the
function available to check if the provider has enough capacity and
power budget for the current replica (i.e., Constraints 8 and 9). If so,
thenG-SEP updates the temporary capacity and allocation matrices
(Lines 10-15). Then, if it finds that all the replicas of request i have
been allocated to different providers (i.e., Constraints 6 and 7), it
updates the allocation matrix X (Lines 16-21). Otherwise, it sets the
entries of auxiliary matrix C̄ to their previous values (Lines 22-24).

The main part of G-SEP consists of the loop in Lines 5-24,
which executes N times. In each iteration, sorting the providers
takes O(M logM). Then, providers are visited one by one for each
replica of the current request (Lines 8-15), which takes O(KiMQ).
Finally, the time complexity of Lines 16-24 is O(KiM +Q). We can
ignore Ki and Q here because they generally have much smaller
values compared to N andM . Thus, the time complexity of G-SEP
is O(NM logM), which is polynomial inM and N .

4 Experimental Analysis
4.1 Experimental setup
We generate several problem instances with different numbers of
requesters and providers. Table 2 shows the parameters that we
use to generate instances in our analysis, where U [x ,y] indicates
the uniform distribution within the interval [x ,y]. Note that the
numbers in Table 2 are chosen to represent various realistic het-
erogeneous hardware and software characteristics, so that we can
diversify the scenarios tested without having to test just one par-
ticular hardware and software testbed. To compare the algorithms,
we use the average response time as the performance metric. The
average response time is defined as the total latency of the system
over the total number of allocated replicas. An allocation algorithm
is completely fair if the value of the fairness ratio α j is the same
for all the providers. To evaluate the fairness of the algorithms, we
determine the Coefficient of Variation (CV ) over fairness ratios of
the providers. A lower value ofCV indicates a more fair distribution
of requests. CV is defined as the ratio of the standard deviation of

Table 2. Distribution of parameters
Parameter Distribution Parameter Distribution

rhj U [1, 25] µ 10
Ki U [1, 5] Bj U [200, 400]
di U [5, 100] πj U [100, 300]
C1j 50 ci j U [10, 1000]
C2j U [5, 100] P idlej U [20, 80]
C3j U [5, 100]

α j over the average fairness ratio across providers ᾱ :

CV =

√
1
M

∑M
j=1(α j − ᾱ)

2

ᾱ
(11)

G-SEP is implemented in C++ and the experiments are conducted
on an Intel 1.6GHz Core i5 with 8 GB RAM system. For solving
SEP-MILP, we use the CPLEX 12 solver provided by IBM ILOG
CPLEX optimization studio for academics initiative [4].

4.2 Experimental results
In this section, we study the fairness and the energy consumption
of the vehicles and compare the performance and the scalability
of G-SEP and CPLEX-based solution for problem instances with
varying number of requesters and providers.
Fairness and energy consumption.We first investigate how the
fairness ratio changes over several periods of time and then study
the vehicles’ energy consumption. Intuitively, the ratio between
the total amount of requested resources and the total available
capacity plays an important role on the results. For example, it may
be more difficult to achieve complete fairness when the number of
requests is much smaller than the number of providers. In order to
characterize the relationship between the requested resources and
the capacity, we define the Request to Capacity Ratio (RCR) as:

RCR =

∑N
i=1

∑Q
h=1 rhi∑N

i=1
∑Q
h=1Chj

(12)

We consider two problem instances. In both instances, the number
of requests is the same, N = 20. The number of providers in the first
set is M = 15, while in the second set is M = 30, i.e., RCR = 0.26
and RCR = 0.13, respectively. We run CPLEX and G-SEP for both
problem instances for ten time periods.

Figures 2(a) and 2(b) show the Coefficient of Variance, CV , ob-
tained by CPLEX and G-SEP, respectively, for the two problem
instances. By comparing these two figures, we make two observa-
tions. First, the instance with the lower RCR has a higher CV for
both algorithms, which means that the allocation algorithms have
more difficulties on ensuring fairness when the number of requests
is not sufficiently high. This is because some of the providers may
have no assignment in some periods. However, we observe that,
for both instances and algorithms, generally theCV decreases over
time, which means that the algorithms can improve the fairness
over multiple executions. Second, CPLEX can generally achieve
a better fairness, i.e., a lower CV value, compared to G-SEP. For
example, the CV for CPLEX is always smaller than 0.025 during
all the periods while the CV for G-SEP is always smaller than 0.9.
Although distributions with a CV lower than 1 are generally con-
sidered as low-variance distributions, i.e., G-SEP achieves good
fairness, this difference in achieved fairness between the two al-
gorithms is due to the fact that CPLEX generally considers more
allocation options compared to G-SEP. However, as we show later,
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Figure 3. The effect of the number of requests (N ) on (a) Execution time of the placement algorithm, (b) Coefficient of Variance (CV ) of
fairness ratio, and (c) average workload response time.

CPLEX has a much higher execution time compared to G-SEP,
which means that CPLEX cannot be used in real scenarios.

We now investigate the computational energy consumption of
the vehicles. In general, it is desired to have the extra amount
of energy used by the providers much smaller than the amount
of energy saved by the requesters. This would mean that, in the
next periods, those providers will be able to actually save energy
when they will become requesters, even after using some energy
to host the workload of other vehicles. For this study, we use a
problem instance with an RCR of 0.12, N = 10, and M = 25, to
test the energy consumption when it is more difficult to achieve
a fair load distribution across providers (due to space limitations,
we omit the results for other combinations of N and M). We run
CPLEX and G-SEP ten times to simulate ten periods of replica
manager and show the average energy consumption of provider
and requester vehicles. As the baseline for comparison, we calculate
the vehicles’ energy consumption when they do not share their
workload, i.e., No Sharing. Figure 2(c) shows the results. On average,
CPLEX and G-SEP achieve similar results: sharing the resources
allow requester vehicles to save 85% of their computational energy
consumption compared to the No Sharing baseline, while providers
have an average of 28% increase in energy consumption. Thus,
those providers will be able to achieve energy savings when they
will become requesters in future executions.
Performance and scalability with respect to the number of
requesters. We now test the performance of CPLEX and G-SEP
by varying the number of requests. We assume a fixed number of
providers (M = 40) and vary the number of requests from 5 to 40.

We stop at 40 because, with more requests, there is no feasible
solution that satisfies Constraints 7-9 of the SEP-MILP.

In Figure 3(a), we compare the execution time of CPLEX and
G-SEP. By increasing the number of requests, the execution time of
CPLEX increases exponentially, thus making CPLEX not scalable to
a large number of requesters. For example, CPLEX finds the optimal
solution for an instance with N = 5 in less than 0.1 seconds while,
to solve an instance with 40 requests, CPLEX requires 619 seconds.
This is because, by increasing the number of requests, it is harder for
CPLEX to find a feasible solution. On the other hand, the execution
time of G-SEP for fixed M increases linearly with the number of
requests (as proved in Section 3) and its execution time is smaller
than 1 millisecond in the worst case, while allocating more than 85%
of the requests. Thus, compared to CPLEX, G-SEP is more scalable
with respect to the number of requester vehicles.

Figure 3(b) shows the CV obtained by CPLEX and G-SEP. For
both algorithms, the value of CV generally decreases by increasing
the number of requests because, when there are a few requests in
the system, many providers may have no assignment, which leads
to a high value ofCV . The value ofCV obtained by CPLEX is always
lower than 0.05. Although CPLEX shows a better fairness, the CV
of G-SEP is always lower than one for all instances, which still
indicates a good distribution across providers. Figure 3(c) shows
the average request response time obtained with each algorithm.
By increasing the number of requests, we observe an increment in
the average response time because each request has less options for
the assignment. By comparing the results of the two algorithms, we
can observe that CPLEX, although it needs a long execution time
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Figure 4. The effect of the number of providers (M) on (a) execution time of the placement algorithm, (b) Coefficient of Variance (CV ) of
fairness ratio, and (c) average workload response time.

for a high number of requests (see Figure 3(a)), achieves only a 17%
better response time for requesters. Thus, G-SEP, other than being
more suitable for a real-world scenario by having low execution
times, achieves a near optimal allocation performance and response
time for varying number of requesters.
Performance and scalability with respect to the number of
providers. Finally, we analyze the effect of the number of providers
on the performance of CPLEX and G-SEP. We consider a fixed
number of requests (N = 20) and vary the number of providers
from 15 to 50. We stop at 15 because, with fewer providers, there is
no feasible solutions that satisfies the constraints of the SEP-MILP.

Figure 4(a) shows the execution time obtained by CPLEX and
G-SEP. We observe that by increasing the number of providers, the
execution time of CPLEX decreases while the execution time of
G-SEP increases. The reason is that, by increasing the number of
providers, there is a lower level of competition between requests
in order to obtain the optimal assignment. Therefore, finding the
optimal solution is simpler for CPLEX. On the other hand, the time
complexity of G-SEP depends on the number of providers. Thus,
by increasing the number of providers, the execution time of G-
SEP increases. On the other hand, the execution time of CPLEX
(< 32 seconds) is significantly higher than that of G-SEP (< 0.7
milliseconds), which allocates more than 85% of the requests.

Figure 4(b), shows the CV obtained by CPLEX and G-SEP. For
both algorithms, theCV generally increases with the increase in the
number of providers because some of the providers will have no as-
signment. Figure 4(c) shows the average response time obtained by
each algorithm. By increasing the number of providers, the average
response time decreases because each request has more allocation
options. Although CPLEX achieves a better fairness, G-SEP shows
only a 5.6% increase in response time compared to CPLEX. Thus,
G-SEP, despite having a much lower execution time compared
to CPLEX, achieves a near optimal allocation performance and
response time for varying number of providers.

5 Conclusions and Future Work
In this paper, we addressed the problem of energy-efficient spec-
ulative execution in VEC systems. We proved that the problem
is NP-hard and developed a greedy algorithm (G-SEP) to solve it.
We evaluated the performance of G-SEP and compared it with the
optimal solution. Our results showed that G-SEP achieves near
optimal performance with a considerably lower execution time.
As future work, we plan to develop an energy manager that can
make decisions on the vehicles states (requester or provider) and

guarantee energy savings for all the participating vehicles over
multiple executions of energy manager and replica manager.
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