
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/349080717

A Parallel Randomized Approximation Algorithm for Non-Preemptive Single

Machine Scheduling with Release Dates and Delivery Times

Article in Computers & Operations Research · February 2021

DOI: 10.1016/j.cor.2021.105238

CITATION

1
READS

152

3 authors:

Hossein Badri

Amirkabir University of Technology

30 PUBLICATIONS 865 CITATIONS

SEE PROFILE

Tayebeh Bahreini

Wayne State University

19 PUBLICATIONS 409 CITATIONS

SEE PROFILE

Daniel Grosu

Wayne State University

148 PUBLICATIONS 4,047 CITATIONS

SEE PROFILE

All content following this page was uploaded by Hossein Badri on 28 February 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/349080717_A_Parallel_Randomized_Approximation_Algorithm_for_Non-Preemptive_Single_Machine_Scheduling_with_Release_Dates_and_Delivery_Times?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/349080717_A_Parallel_Randomized_Approximation_Algorithm_for_Non-Preemptive_Single_Machine_Scheduling_with_Release_Dates_and_Delivery_Times?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hossein-Badri?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hossein-Badri?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Amirkabir-University-of-Technology?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hossein-Badri?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tayebeh-Bahreini?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tayebeh-Bahreini?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Wayne-State-University?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tayebeh-Bahreini?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Grosu-3?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Grosu-3?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Wayne-State-University?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Grosu-3?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hossein-Badri?enrichId=rgreq-1a4fbc57b4bd9fb2681246d13fcf3112-XXX&enrichSource=Y292ZXJQYWdlOzM0OTA4MDcxNztBUzo5OTYyMDg2NTQ5NTQ0OTZAMTYxNDUyNjA2MDU0MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Parallel Randomized Approximation Algorithm for Non-Preemptive
Single Machine Scheduling with Release Dates and Delivery Times

Hossein Badria, Tayebeh Bahreinia, Daniel Grosua,1,∗

aDepartment of Computer Science, Wayne State University, Detroit, MI, USA

Abstract

Single machine scheduling is a very fundamental scheduling problem with extensive applications in

various areas ranging from computer science to manufacturing. Also, this problem is the building

block of different decomposition-based algorithms for shop scheduling problems. Most variants of

the single machine scheduling problem are known to be NP-hard, and therefore, many efforts have

been devoted to the development of approximation algorithms for solving them. In this paper,

we design a parallel randomized approximation algorithm for the non-preemptive single machine

scheduling problem with release dates and delivery times (1|rj , qj |Cmax), where the objective is

to minimize the completion time of all jobs (i.e., makespan). To evaluate the performance of the

proposed algorithm, we carry out a comprehensive experimental analysis on several instances of

the problem. The results indicate that the proposed parallel algorithm can efficiently solve large

instances achieving significant speedup on parallel systems with multiple cores.

Keywords: Single machine scheduling, parallel algorithm, randomized polynomial-time

approximation algorithm

1. Introduction

Scheduling problems have received a significant attention from researchers in the field of oper-

ations research and algorithms, resulting in a large number of publications (Graham et al. 1979,

Allahverdi et al. 2008, Mnich & van Bevern 2018). There are two main reasons for such significant

efforts on developing novel solution methods for these problems. First, scheduling has extensive ap-

plications in several areas such as: manufacturing systems (Nguyen et al. 2017, Fazlirad & Brennan

∗Corresponding author
Email addresses: hossein.badri@wayne.edu (Hossein Badri), tayebeh.bahreini@wayne.edu (Tayebeh

Bahreini), dgrosu@wayne.edu (Daniel Grosu)
1Address: 5057 Woodward Ave, Detroit, MI 48202

Preprint submitted to Computers & Operations Research February 28, 2021

2018), appointment scheduling (Gupta & Denton 2008, Marynissen & Demeulemeester 2019), oper-

ating theatre scheduling (Augusto et al. 2010, Cardoen et al. 2010), nurse scheduling (Schoenfelder

et al. 2020), and many other types of problems related to capacity planning (Hall et al. 2012). Re-

source planning in distributed systems is another area of applications for scheduling (Mashayekhy

et al. 2015, Bittencourt et al. 2017).

Second, most of the scheduling problems are known to be computationally complex (Lenstra

et al. 1977). More specifically, most of the scheduling problems are NP-hard, that is, there is no

algorithm to solve these problems in polynomial time, unless P=NP. The computational complexity

of scheduling problems motivated researchers to devote their efforts on developing fast solution

methods including heuristic methods (Kurz & Askin 2001, Weng & Lu 2005, Tsai et al. 2014).

Heuristic methods are usually efficient in terms of their execution time, while their main drawback

is the lack of any guarantees for the quality of solutions. Given this fact, many efforts were devoted

to the development of approximation algorithms. An α-approximation algorithm is a polynomial

time algorithm that, for all instances of the problem, finds a solution whose distance from the

optimal solution is within a factor of α (the so-called approximation ratio) (Williamson & Shmoys

2011, Vazirani 2013).

Alongside the development of multi-core systems, researchers have attempted to leverage these

systems and design fast parallel algorithms to solve scheduling problems. Most of these efforts

have been devoted to developing parallel evolutionary algorithms for scheduling problems (Fun-

abiki & Takefuji 1993, Taillard 1994, Kalashnikov & Kostenko 2008, Dulebenets 2019, Feng et al.

2017). When it comes to approximation algorithms, the majority of research has been focused

on designing sequential approximation algorithms (Williamson & Shmoys 2011). In recent years,

very few research works have focused on designing parallel approximation algorithms for scheduling

problems (Li et al. 2018, Ghalami & Grosu 2017, 2019). Even for other NP-hard combinatorial

optimization problems, very few efforts were directed at designing parallel approximation algo-

rithms (Blelloch et al. 2011, Blelloch & Tangwongsan 2010, Rajagopalan & Vazirani 1998).

Among scheduling problems, single machine scheduling has received a significant attention, due

to its widespread applications (Talebi et al. 2009, Laalaoui & M’Hallah 2016, Niu et al. 2019, Gahm

et al. 2019, Shen & Zhu 2020, Zhao et al. 2020). In this paper, we design a parallel approximation

algorithm for non-preemptive single machine scheduling with release dates and delivery times,

2

where the objective is to minimize the makespan. To the best of our knowledge, no other research

has addressed the design of parallel approximation algorithms for this problem. This problem is

denoted by 1|rj , qj |Cmax (Lawler et al. 1993) and is defined as follows:

1|rj , qj |Cmax Problem: We are given a set of n jobs that need to be scheduled on a

single machine. Each job, j, j = 1 . . . , n, is characterized by its processing time pj > 0,

release date rj ≥ 0, and delivery time qj ≥ 0. At most one job can be processed at

a time, a job cannot be processed before the release date, and a job’s delivery begins

immediately after its processing is completed. Once a job is assigned for execution it

cannot be preempted. The objective is to minimize the makespan (i.e., the time by

which all jobs are delivered).

This problem is equivalent to the single machine scheduling problem with release dates and due

dates, where the objective is to minimize the maximum lateness (1|rj |Lmax) (Graham et al. 1979,

Nowicki & Smutnicki 1994). Algorithms for solving this problem have been widely employed as

building blocks in the design of algorithms for shop scheduling problems (Adams et al. 1988, Balas

et al. 1995, Carlier & Pinson 1989). This problem is strongly NP-hard (Lenstra et al. 1977), and

therefore, a polynomial time approximation scheme (PTAS) is the best approximation achievable

in polynomial running time, unless P = NP (Garey & Johnson 1978). A PTAS is a family

of (1 + ε)-approximation algorithms whose time complexity can depend arbitrarily on 1/ε, where ε

is a non-negative parameter that dictates how far from the optimal is the solution obtained by

the PTAS (Williamson & Shmoys 2011). Our goal in this paper is to design a practical parallel

randomized approximation algorithm for 1|rj , qj |Cmax, that exploits the huge processing power of

modern multi-core parallel systems.

2. Related work

Schrage (1971) was the first to investigate the design of approximation algorithms for 1|rj , qj |Cmax.

He designed a constant approximation algorithm which is known as the Extended Jackson’s Rule

(EJR). The basic idea in EJR is to schedule greedily/iteratively the job with the maximum delivery

time among all schedulable jobs (whose release dates have arrived). Kise et al. (1979) proved that

Schrage’s algorithm is a 2-approximation algorithm. An implementation of this algorithm requir-

ing O(n log n) running time was proposed by Carlier (1982). The EJR algorithm was employed

3

by other researchers as a building block of more efficient approximation algorithms (Potts 1980,

Nowicki & Smutnicki 1994).

Potts (1980) designed a 3/2-approximation algorithm with O(n2 log n) running time. The design

of this algorithm is based on the concepts of critical sequence and interference job. The job jc which

is the last completed (delivered) job is called the critical job, and the critical sequence is defined

as {jm, . . . , jc}, where jm is the earliest scheduled job such that the processing of each job begins

immediately after the processing of the previous job in the sequence is completed (i.e., there is

no idle time). An interference job jb is a job in the critical sequence with qjb < qjc which has an

earlier release date than the critical job (rjb < rjc). While there exists an interference job, Potts’s

algorithm executes EJR, iteratively. In each iteration, the critical job is shifted backward in the

sequence by setting rjb = rjc .

Nowicki & Smutnicki (1994) designed a 3/2-approximation algorithm with O(n log n) running

time. This algorithm first runs Schrage’s algorithm and obtains a sequence which is denoted by πS .

If there is no interference job, πS is considered the output sequence. If there exists an interference

job jb, jobs are divided into two sets, A and B. Set A consists of jobs that satisfy ri ≥ qi, and

are sorted in order of nondecreasing ri. Set B consists of jobs that satisfy ri < qi and are sorted

in order of nonincreasing qi. The interference job is not included in any of the two sets, and the

resulting permutations of set A and B are denoted by πA and πB, respectively. A new permutation

is created as πAB := πArbπB. Finally, the permutation which has the minimum makespan is chosen

as the output sequence; i.e., min{Cmax(πS), Cmax(πAB)}.

Hall & Shmoys (1992) proposed a constant approximation algorithm for the problem with prece-

dence constraints and two polynomial time approximation schemes (PTAS) for the problem without

precedence constraints. Similarly to the previously mentioned approximation algorithms, the con-

stant approximation algorithm (called HS1 here) is based on EJR. The constant approximation

algorithm was developed based on the properties of the inverse problem. The inverse problem is

obtained by interchanging rj and qj for all jobs and inverting the precedence relation. According to

the definition of the inverse problem, {j1, . . . , jn−1, jn} is an optimal sequence for the original prob-

lem if and only if {jn, jn−1, . . . , j1} is an optimal sequence for the inverse problem. This algorithm

has O(n2 log n) running time and produces a sequence which is within 4/3 of the optimal solution.

They also proposed an approximation scheme (called HS2 here) based on a dynamic programming

4

formulation whose running time is O(161/ε(n/ε)3+4/ε). The second approximation scheme that was

proposed by the same authors (called HS3 here) is based on the idea of dividing jobs into two sets

of large and small jobs, such that the number of large jobs is fixed according to the value of ε. The

running time of this approximation scheme is O(n log n + n(4/ε)8/ε2+8/ε+2). The computational

complexity of these approximation schemes makes them hard to use in practice.

Other types of algorithms have been designed for solving the problem such as those based on

enumeration techniques (Baker & Su 1974, Lageweg et al. 1976, McMahon & Florian 1975). Due to

space limitation we will not review these algorithms here. Several papers such as Chen et al. (1998)

and Lenstra et al. (1977) provide comprehensive surveys of scheduling problems and algorithms.

The traditional design of approximation algorithms only focused on sequential approximation

algorithms for 1|rj , qj |Cmax. Here, we address an issue that was not considered in the design

of approximation algorithms for this problem, that is, taking into account the huge computing

power of the current multi-core systems and exploiting the potential parallelism when designing

parallel approximation algorithms for 1|rj , qj |Cmax. Therefore, we design a parallel randomized

approximation algorithm for 1|rj , qj |Cmax based on the HS2 algorithm (a PTAS), proposed by Hall

& Shmoys (1992). To the best of our knowledge, this is the first practical parallel approximation

algorithm for 1|rj , qj |Cmax that maintains the approximation guarantees of the sequential PTAS

and is specifically designed for execution on current multi-core machines. We perform an extensive

experimental analysis on a large multi-core system to evaluate the performance of the proposed

algorithm using four different classes of benchmarks. The results show that for large instances of

the problem, our parallel randomized algorithm achieves reasonable speedup with respect to both

its sequential counterpart and the sequential EJR algorithm.

The rest of the paper is organized as follows. In Section 3, we describe the proposed parallel

randomized approximation algorithm and characterize its approximation guarantee and computa-

tional complexity. In Section 4, we present the results of an extensive experimental analysis of the

algorithm on a multi-core system with 64 cores. In Section 5, we conclude the paper and present

possible directions for future research.

5

3. A parallel randomized approximation algorithm for 1|rj, qj|Cmax

We propose a parallel randomized approximation algorithm for 1|rj , qj |Cmax that is suitable for

execution on current multi-core systems and exploits their full potential for parallel execution. The

proposed parallel randomized algorithm is based on the sequential PTAS (HS2) proposed by Hall

& Shmoys (1992). The HS2 algorithm converts the problem into a restricted version with a fixed

number of release dates by rounding the release dates. Then, it uses dynamic programming to

determine the best schedule for each of the plausible choices of ∆i’s, where ρi + ∆i is the time

at which a job j with rj ≥ ρi can be scheduled in the interval [ρi + ∆i, ρi+1 + ∆i+1). Figure 1

illustrates the parameters of he algorithm in a schedule structure. This figure shows an instance

with κ intervals. A shaded block represents the gap between the release date of each interval, ρi

and the actual starting time of jobs with rj ≥ ρi. In this structure, ai is the total processing time

of jobs scheduled in the interval [ρi+∆i, ρi+1 +∆i+1). Because of the large number of choices of ∆i

that need to be considered, the HS2 algorithm is not suitable for practical implementation. To

provide a more practical algorithm and reduce the number of choices that need to be considered,

our parallel randomized algorithm selects a sample out of all the possible choices and determines

the best schedule by dynamic programming, in parallel. Thus, the basic idea of our algorithm is to

avoid enumerating all possible values for ∆i, and instead, consider a randomly selected sample of

all possible choices. Table 1 gives the notation that will be used in the rest of the paper.

The proposed parallel randomized approximation algorithm for 1|rj , qj |Cmax is given in Algo-

rithm 1. The algorithm is designed for shared memory parallel machines with M processors. First,

the algorithm rounds down all the release dates to the nearest multiple of ε
2 maxj{rj} to obtain a

fixed number κ of release dates, where ε is the approximation error (lines 1-5). Then, it employs a

second phase of rounding in which the processing times and the release dates are rounded to the

nearest multiple of εP4n , where P =
∑n

j=1 pj (lines 6-9). Next, all the jobs are sorted in nonincreasing

ρ1

∆1 a1

ρ2

∆2 a2

ρκ

∆κ aκ

Figure 1: Illustration of the shceduling parameters used in the algorithm

6

Table 1: Notation

Notation Definition

pj processing time of job j

rj release date of job j

qj delivery time of job j

P̂ sum of rounded processing times

κ number of distinct release dates (equivalent to number of intervals)

ρi release date of interval i

τi actual starting time for the jobs scheduled in interval i

∆i gap between ρi and the actual starting time τi for jobs with rj ≥ ρi
cl(
−→a ; j) minimum completion time of a schedule for jobs {1, ..., j}

that uses exactly ai total processing time in interval [ρi + ∆i, ρi+1 + ∆i+1)

s sample size

Di set of possible values of ∆i in interval i

π set of all possible size κ vectors of ∆i

M number of processors (cores)

Cm the candidate schedule obtained by processor m

order of their delivery dates and s = d4
ε e random numbers are drawn from the uniform distribution

within [1, P̂], where P̂ =
∑n

j=1 p̂j . These generated numbers form the set Di (lines 10-11). All the

above steps are executed by only one processor.

Then the algorithm generates all possible choices of vectors of size κ out of the s elements of

sets Di in parallel which are then stored in the array π (lines 13-14). Once the above steps are

completed the algorithm proceeds to evaluate all (4
ε)
κ schedules in parallel, each processor out of

the M processors being responsible for evaluating (4
ε)
κ/M schedules (lines 15 - 33). For all choices

of ∆i and all possible values of ai, jobs are scheduled such that each job is scheduled last in the

interval which leads to the minimum increase in the completion time. Here, ai is the total processing

time for jobs {1, ..., j} in the interval [ρi + ∆i, ρi+1 + ∆i+1). This is done by employing dynamic

programming for each choice of ∆is, where each choice is associated with an index l. The dynamic

programming formulation (Hall & Shmoys 1992) for determining the minimum completion time cl

7

Algorithm 1 Parallel randomized approximation algorithm for 1|rj , qj |Cmax
1: η ← ε

2
maxj{rj}

2: for j = 1 to n do . rounding to obtain a fixed number of release dates

3: r̃j ←
⌊
rj
η

⌋
4: end for

5: κ← the fixed number of release dates after rounding

6: θ ← εP
4n

7: for j = 1 to n do . round down all processing times and release dates

8: p̂j ←
⌊
pj
θ

⌋
, r̂j ←

⌊
r̃j
θ

⌋
9: end for

10: order the jobs such that q1 ≥ q2 ≥ ... ≥ qn
11: generate d 4

ε
e random integers from [1, P̂]. Di is the set of these generated numbers in interval i.

12: for m = 1 to M do in parallel

13: pick elements

[
d 4
ε
e

M
(m− 1), . . . ,

d 4
ε
e

M
m

)
from D1

14: π[1,...,sκ],[1,...,κ] ← all possible choices of size κ vectors formed from elements picked in line 13 and

elements from D2, . . . ,Dκ.

15: for l =
[
sκ

M
(m− 1)

]
to
[
sκ

M
m
]
do

16: initialize the array cl: cl(0, . . . , 0; 0)← 0 and all other entries to ∞

17: for i = 1 to κ do

18: ∆i = πl,i

19: end for

20: for j = 1 to n do

21: for all tuples (a1, ..., aκ) satisfying

22: (
∑κ
i=1 ai =

∑j
l=1 p̂l and ρi + ∆i + ai ≤ ρi+1 + ∆i+1 ∀i = 1, ..., κ) do

23: for all i such that r̂j ≤ ρi do

24: compute cl(a1, ..., ai−1, ai − p̂j , ai+1, ..., aκ; j) using equation (1)

25: end for

26: end for

27: select the interval with the minimum length and

28: schedule job j last among the jobs already scheduled in the selected interval

29: end for

30: keep min−→a cl(
−→a ;n) and the corresponding actual schedule

31: end for

32: Sm ← schedule corresponding to minl{min−→a cl(
−→a ;n)}

33: end for

34: Sbest ← schedule with minimum length among {S1,S2, . . . ,SM}

35: use the ordering in Sbest to schedule the jobs

36: calculate the makespan of the obtained schedule using the original release dates and processing times

is given by:

cl(
−→a ; j) = min{max{cl(a1, . . . , ai−1, ai − pj , ai+1, . . . , aκ; j − 1), (1)

ρi + ∆i + ai + qj}; i|rj ≤ ρi}

8

It should be noted that to make the last interval a feasible interval, we must set the release date

of interval κ + 1 to infinity, i.e., ρκ+1 = ∞. The best schedule among all the schedules explored

by a processor m is stored in Sm. Then, the best schedule Sbest among all schedules obtained by

the M processors is determined by a parallel reduction operation with the minimum as the operator

(line 34). Finally, the algorithm uses the ordering of jobs in schedule Sbest to schedule the jobs

and determines the makespan of the final schedule using the original release dates and processing

times of the jobs. In the following, we prove that the proposed algorithm finds a schedule whose

expected length is within 1 + ε from the length of the optimal schedule.

Theorem 1. The parallel randomized approximation algorithm for 1|rj , qj |Cmax given in Algo-

rithm 1 finds a schedule with an expected length of at most (1 + ε)T ∗, where T ∗ is the length of the

optimal schedule.

Proof. In lines 6 to 9, the algorithm rounds down all the processing times and the already

rounded release dates r̃j to the nearest multiple of θ = εP/4n. Therefore,

p̂j =
⌊pj
θ

⌋
, r̂j =

⌊
r̃j
θ

⌋
(2)

where p̂j and r̂j are the rounded values for pj and rj , respectively. Let P̂ be the sum of the rounded

values of p̂j . In line 11, the algorithm generates d4
ε e random numbers from the uniform distribution

within [1, P̂] to be assigned to
−→
∆ = {∆1, . . . ,∆κ}. Assume that the interval [0, P̂] is divided into

d4
ε e sub-intervals, each of length ε

4 P̂ .

Let ∆∗i denote the optimum value for ∆i. Since the number of ∆i’s that are randomly generated

from the uniform distribution U [1, P̂] is d4
ε e, the expected value of the smallest distance between

the generated ∆i and ∆∗i is given by,

E[min
i
{|∆i −∆∗i |}] =

P̂

d4
ε e+ 1

≤ ε

4
P̂ (3)

In the schedule with the optimum values for ∆i, the starting time of the jobs scheduled in interval i

is τ∗i = ρi + ∆∗i . With randomly generated ∆i, the starting time is τi = ρi + ∆i. From (3) we

have,

τi ≤ τ∗i +
ε

4
P̂ (4)

which implies that there is an increase of ε
4 P̂ in the makespan of the rounded problem.

9

The schedule in line 34 of the algorithm must be used for the problem with the original values

for pj and rj (line 35). Thus, the increase in the makespan value will be,

nθ = nεP/4n =
ε

4
P (5)

Also in line 1 of the algorithm, all the release dates are rounded to the nearest multiple of ε2 maxj{rj}.

Therefore, to calculate the bound for the problem with the original parameters, we just need to

add ε
2 maxj{rj} to every ρi. Clearly, there will be an increase of ε

2 maxj{rj} in the makespan of

the problem. We know that P̂ ≤ T ∗, P ≤ T ∗, and maxj{rj} ≤ T ∗; therefore, the expected value of

the makespan for the original problem is:

E[T] ≤T ∗ +
ε

4
P̂ +

ε

4
P +

ε

2
max
j
{rj} ≤ T ∗ +

ε

4
T ∗ +

ε

4
T ∗ +

ε

2
T ∗ ≤ T ∗ + εT ∗ ≤ (1 + ε)T ∗ (6)

where T ∗ is the optimal value for the makespan.

Theorem 2. The time complexity of the proposed parallel randomized approximation algorithm for

1|rj , qj |Cmax is O(8n(1
ε)

2(4
ε)

2
ε /M).

Proof. The time complexity of the proposed algorithm is given by the time complexity of the

parallel section (lines 12-33). Generating all possible choices of size κ vectors (lines 13-14) takes

O((1
ε)

1
ε /min{M, 1

ε}).

In the next steps of the algorithm, each processor executes a loop consisting of (4
ε)
κ/M iterations,

each taking O(nκ), for a total of O(nκ(4
ε)
κ/M). Since κ is at most 2

ε + 1, and 2
ε > 1, the time

complexity of lines 12-33 is O((1
ε)

1
ε /min{M, 1

ε} + 8n(1
ε)

2(4
ε)

2
ε /M). For the case of M < 1

ε , the

time complexity of the algorithm is O((1
ε)

1
ε /M + 8n(1

ε)
2(4
ε)

2
ε /M). Therefore, the time complexity

of the algorithm is given by O(8n(1
ε)

2(4
ε)

2
ε /M). For the case of M > 1

ε , the time complexity of

the algorithm is O((1
ε)

1
ε
−1 + 8n(1

ε)
2(4
ε)

2
ε /M). In this case, the time complexity of the algorithm is

given by the second term, and therefore, it is O(8n(1
ε)

2(4
ε)

2
ε /M).

4. Experimental analysis

In this section, we analyze the performance of the proposed algorithm by performing extensive

experiments on a multi-core system. First, we present the experimental setup, where benchmarks,

distribution of the input parameters, and performance measures are defined. Then, we present the

10

experimental results and analyze the performance of the proposed algorithm. Hereafter, we denote

the serial version of our randomized approximation algorithm by S-RAA and denote the parallel

version of our randomized approximation algorithm by P-RAA.

4.1. Experimental setup

Release dates, processing times, and delivery times are the three main parameters that would

affect the performance of any solution method designed for 1|rj , qj |Cmax. Among different ex-

perimental designs, analyzing the impact of the variance of the release date and the ratio of the

delivery time to the processing time is of high importance. Therefore, to provide insights on the

performance of our proposed algorithm on different configurations of these parameters, we employ

several benchmark problem instances classified into four classes, as follows:

I. Short delivery times, high variance release dates (SD-HVR): the delivery times are not very

large compared to the processing times, and the release dates have a high variance.

II. Long delivery times, high variance release dates (LD-HVR): the delivery times are large com-

pared to the processing times, and the release dates have a high variance.

III. Short delivery times, low variance release dates (SD-LVR): the delivery times are not very

large compared to the processing times, and the release dates have a low variance.

IV. Long delivery times, low variance release dates (LD-LVR): the delivery times are large com-

pared to the processing times, and the release dates have a low variance.

In this analysis, we rely on independently generated random instances. The size of each instance

is determined by the number of jobs, n. Also, there are three input parameters for each instance:

(i) processing times, pj , which are drawn from a normal distribution; (ii) release dates, rj , which

are drawn from a uniform distribution; and (iii) delivery times, qj , which are drawn from a normal

distribution. In the experiments, we investigate the impact of the magnitude of delivery dates with

respect to processing times on the performance of our proposed algorithm. For that reason, we

take processing times as the base with a fixed distribution across four class of instances and change

the parameters for the distribution of delivery dates. The distributions of the input parameters

for each class of instances are shown in Table 2, where i ∈ {3, . . . , 7}. In this table, we denote

by U [x, y], the uniform distribution within interval [x, y], and by N(µ, σ), the normal distribution

with mean µ and standard deviation σ.

11

Table 2: Distribution of parameters for each class of benchmarks

Class pj rj qj

SD-HVR N(100, 20) U(0, 10i) N(100, 20)

LD-HVR N(100, 20) U(0, 10i) N(500, 100)

SD-LVR N(100, 20) U(0, 102) N(100, 20)

LD-LVR N(100, 20) U(0, 102) N(500, 100)

We analyze the performance of the proposed algorithm for each class of instances using two

important metrics, the execution time and the makespan obtained by the proposed parallel ran-

domized approximation algorithm, for instances of various sizes. For benchmarking, we can not

rely on the existing approximation schemes (HS2 and HS3) due to their very high time complexity,

which makes them unfeasible to execute in reasonable amount of time. Therefore, we use a con-

stant approximation algorithm as a benchmark. There exist two approximation algorithms with the

lowest time complexity, i.e., Extended Jackson’s Rule (EJR), proposed by Schrage (1971), and the

approximation algorithm proposed by Nowicki & Smutnicki (1994). Although these two algorithms

have the same asymptotic time complexity, we choose EJR for benchmarking since this algorithm is

the building block of the algorithm by Nowicki & Smutnicki (1994), and is expected to have lower

actual running time than it.

We define the performance gap with respect to EJR asGEJR = C−CEJR
CEJR

, where C is the makespan

of the schedule obtained by the proposed approximation algorithm, and CEJR is the makespan

obtained by the EJR algorithm. For the analysis of the execution time, we compare the execution

time of the parallel approximation algorithm with that of EJR which has the time complexity

of O(n log n). This analysis is performed by varying the number of cores from 2 to 64 and with

instances of sizes 10i, i ∈ {3, . . . , 7}. Since we perform our analysis using ε ≥ 0.2, we do not

expect considerable speed-up by executing lines 13-14 of the algorithm on multiple cores. Thus,

we use one core for this part of the algorithm. To analyze the effects of different values of ε

on the execution time and the speed-up of the proposed algorithm, we perform the experiments

with ε = {0.2, 0.6, 1.0}. The aim of including ε = 1.0 in our analysis is to maintain fairness

while comparing the performance of our proposed algorithm with that of EJR. We define two

speed-up metrics to evaluate the performance of the parallel approximation algorithm: (i) speed-up

with respect to EJR, denoted by SEJR, and (ii) speed-up with respect to the serial version of the

12

103 104 105 106 107

n

0.00

0.02

0.04

0.06

0.08

0.10

G
EJ

R

SD-HVR
LD-HVR

SD-LVR
LD-LVR

Figure 2: Performance gap with respect to EJR vs. size of instances (ε = 1.0)

proposed parallel approximation algorithm, denoted by SS . These metrics are defined as follows:

SEJR = TEJR
TP

and SS = TS
TP

, where TEJR is the average execution time of EJR, TP is the average

execution time of the proposed parallel randomized approximation algorithm, and TS is the average

execution time of the serial version of the proposed parallel randomized approximation algorithm.

All the experiments are performed on a multi-core AMD system with 64-cores, 2.4GHz, and 512GB

of RAM. Each experiment is run 30 times and the analysis is done based on the average values

of the makespan, and the running time. We use standard deviation (STD) as a metric for the

reliability of the results (McGeoch 1992, Johnson 2002). Also, in order to provide some on the

range of the execution time and GEJR for the considered instances, we use the error bar histograms

showing the standard deviation of the metrics obtained by considering the 30 runs.

4.2. Experimental results

In this section, we present the experimental results and aim at providing insights on the per-

formance of the proposed randomized approximation algorithm under different distributions of the

parameters. First in Figure 2, we compare the gap in performance of S-RAA with respect to EJR

for different classes of benchmarks. We observe that the gap (GEJR) is within 6% for all classes of

instances, which is acceptable due to the fact that EJR is a 2-approximation algorithm and S-RAA

13

103 104 105 106 107

n

10 3

10 2

10 1

100

101

102
Av

er
ag

e
ex

ec
ut

io
n

tim
e

(s
ec

)
EJR
S-RAA
P-RAA

(a) SD-HVR

103 104 105 106 107

n

10 3

10 2

10 1

100

101

102

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

EJR
S-RAA
P-RAA

(b) LD-HVR

103 104 105 106 107

n

10 3

10 2

10 1

100

101

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

EJR
S-RAA
P-RAA

(c) SD-LVR

103 104 105 106 107

n

10 3

10 2

10 1

100

101

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

EJR
S-RAA
P-RAA

(d) LD-LVR

Figure 3: Execution time vs. size of instances

has the same approximation ratio with ε = 1.0. We also observe that generally, S-RAA performs

better for the classes of benchmarks with low variance for the release dates, i.e., SD-LVR and LD-

LVR. Comparing the performance of on instances with short delivery times and long delivery times

shows that our algorithm is not significantly sensitive to the relative distribution of the processing

and delivery times.

Now, we evaluate the performance of S-RAA and P-RAA algorithms with respect to EJR.

Since EJR is a 2-approximation algorithm, for the sake of fairness, we run S-RAA and P-RAA

with ε = 1.0. We solve instances of sizes 10i, i ∈ {3, . . . , 7} using EJR, S-RAA, and P-RAA, and

analyze the average execution time for each size. For P-RAA, we use the minimum average execu-

tion time across different number of cores. Figure 3 shows the execution times for the four class of

instances.

14

In Figure 3a, the results for class SD-HVR are shown for instances with different sizes. This class

of benchmarks includes instances in which the delivery times of jobs are not very large compared

to the processing times. Another feature of this class of benchmarks is that the distribution of the

arrival time of jobs (release date) has a high variance. In this figure, we observe that S-RAA has a

slightly higher execution time compared to the EJR algorithm. But, by using the parallel algorithm

(P-RAA) and using multiple cores, we obtain a smaller execution time for all the sizes of instances.

P-RAA obtains the minimum average execution times with 4 cores for instances of sizes 103 and 104.

P-RAA requires 8, 16, and 32 cores to acheive the minimum average execution times for instances

of sizes 105, 106, and 107 respectively. It is clear that as the size of instances increases, a larger

number of cores is needed to obtain the best execution times. In other words, jobs in a larger size

instance have a larger number of fixed release dates resulting in a larger number of intervals and a

bigger set of choices for ∆i’s. Therefore, for large instances P-RAA requires more cores to achieve

the highest possible speed-up ratios.

Figure 3b shows the results for class LD-HVR for instances of different sizes.. This class of

benchmarks consists of instances in which the delivery times of the jobs are larger than their

processing times and the release dates have a high variance. We observe that the results for this

class of benchmarks resemble those obtained in the case of the SD-HVR class of benchmarks. For

this class of benchmarks, the EJR algorithm outperforms the S-RAA. But the execution time of

P-RAA is significantly smaller than that of EJR. The lowest execution time of P-RAA is obtained

with 4 cores for instances of size 103, 8 cores for instances of size 104, 16 cores for instances of size

105 and 106, and 32 cores for instances of size 107.

Figure 3c shows the results for class SD-LVR for instances of different sizes. This class of

benchmarks, includes instances in which the delivery times of jobs are comparable to the their

processing times, and the distribution of the arrival times of jobs (release dates) has a low variance.

The results of our analysis show a significant reduction in the execution time of S-RAA and P-RAA

compared to the first two classes of benchmarks (SD-HVR and LD-HVR), specially for the large

size of instances. For the SD-LVR class, similar to the first two classes of benchmarks, S-RAA

and P-RAA are more competitive for large size instances. We observe that for instances of size

107, S-RAA obtains the solution within 10 seconds and outperforms EJR. We observe that P-RAA

requires 8 cores to obtain the minimum execution times for the instances of size smaller than 107.

15

103 104 105 106 107

n

101

M
ax

im
um

 S
EJ

R

4
co

re
s

4
co

re
s

8
co

re
s

16
 c

or
es

32
 c

or
es

4
co

re
s

8
co

re
s

16
 c

or
es

16
 c

or
es

32
 c

or
es

8
co

re
s

8
co

re
s

8
co

re
s

8
co

re
s

16
 c

or
es

8
co

re
s

8
co

re
s

8
co

re
s

8
co

re
s

32
 c

or
es

SD-HVR
LD-HVR

SD-LVR
LD-LVR

(a) SEJR

103 104 105 106 107

n

0

2

4

6

8

10

12

14

16

M
ax

im
um

 S
s

4
co

re
s 4
co

re
s

8
co

re
s

16
 c

or
es

32
 c

or
es

4
co

re
s

8
co

re
s 16

 c
or

es

16
 c

or
es

32
 c

or
es

8
co

re
s

8
co

re
s

8
co

re
s

8
co

re
s

16
 c

or
es

8
co

re
s

8
co

re
s

8
co

re
s

8
co

re
s

32
 c

or
es

SD-HVR
LD-HVR

SD-LVR
LD-LVR

(b) Ss

Figure 4: Maximum speed-ups vs. size of instances (ε = 1.0)

For instances of size 107, the best execution time is obtained with 16 cores.

Figure 3d shows the results for class LD-LVR which consists of benchmarks with jobs with

low variance release dates, and the processing times of jobs are small compared to their delivery

times. The execution time of EJR for this class of benchmarks is almost within the same range

as in the case of SD-LVR instances. On the other hand, the execution time of S-RAA for large

size instances is slightly higher than its execution time for the SD-LVR class, indicating that our

algorithm is more sensitive to the relative distribution of the processing and delivery times than

the EJR algorithm. We also observe that for the class of instances of size n ≤ 106, EJR outperforms

S-RAA in terms of the execution time. But for larger size instances, the execution time of S-RAA

is significantly smaller than that of EJR. Similar to the other classes of benchmarks, as the size

of instances increases, the difference between the execution time of P-RAA and the execution time

of EJR becomes more significant. For the class of instances of size n ≤ 106, the best execution

times for P-RAA are obtained with eight cores, while the best execution time for the instances of

size 107 is obtained with 32 cores.

Figure 4 shows the maximum speed-up ratios for different size of instances from different classes

of benchmarks. Figure 4a shows the maximum speed-up ratio with respect to EJR, SEJR. The

number of required cores for obtaining the maximum speedup is also provided. We observe an

increasing trend in the maximum SEJR, which indicates that P-RAA performs better than EJR in

the case of large size instances. For small size instances, the relative magnitude of the parallelization

16

103 104 105 106 107

n

10 3

10 2

10 1

100

101

102

103
Av

er
ag

e
ex

ec
ut

io
n

tim
e

(s
ec

)

4
co

re
s 4

co
re

s 8
co

re
s 16

 c
or

es

32
 c

or
es

4
co

re
s 8

co
re

s 16
 c

or
es 16

 c
or

es

32
 c

or
es

8
co

re
s 8
co

re
s 8

co
re

s 8
co

re
s

16
 c

or
es

8
co

re
s 8

co
re

s 8
co

re
s 8

co
re

s 32
 c

or
es

SD-HVR
LD-HVR

SD-LVR
LD-LVR

(a) ε = 0.2

103 104 105 106 107

n

10 3

10 2

10 1

100

101

102

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

4
co

re
s 4

co
re

s 8
co

re
s

16
 c

or
es

32
 c

or
es

4
co

re
s 8

co
re

s 16
 c

or
es

16
 c

or
es

32
 c

or
es

8
co

re
s 8
co

re
s

8
co

re
s

8
co

re
s

16
 c

or
es

8
co

re
s 8

co
re

s 8
co

re
s

8
co

re
s 32

 c
or

esSD-HVR
LD-HVR

SD-LVR
LD-LVR

(b) ε = 0.6

103 104 105 106 107

n

10 3

10 2

10 1

100

101

102

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

ec
)

4
co

re
s

4
co

re
s

8
co

re
s

16
 c

or
es 32

 c
or

es

4
co

re
s

8
co

re
s 16

 c
or

es

16
 c

or
es

32
 c

or
es

8
co

re
s

8
co

re
s 8

co
re

s

8
co

re
s

16
 c

or
es

8
co

re
s

8
co

re
s

8
co

re
s

8
co

re
s 32
 c

or
esSD-HVR

LD-HVR
SD-LVR
LD-LVR

(c) ε = 1.0

Figure 5: Best execution time vs. size of instances

overhead prevents the algorithm to yield a significant speed-up. No significant difference is observed

in the maximum speed-up ratio, SEJR, among different classes of benchmarks.

One important metric in the evaluation of P-RAA is the speed-up with respect to its serial

version (Ss). Figure 4b shows the maximum speed-up ratio of P-RAA with respect to S-RAA. We

do not observe any significant difference in the maximum Ss for instances of size n ≤ 106. We

observe a significantly higher Ss for instances of size 107 for classes SD-HVR and LD-HVR. The

reason is that the instances within these two classes have a larger expected number of intervals,

and therefore, more permutations for the values of ∆i. In this case, there is more space for P-RAA

to gain speed-up with respect to S-RAA.

We also compare the best execution times of P-RAA for instances of different sizes (10i, i ∈

{3, . . . , 7}) from the four classes of benchmarks (Figure 5). We observe that the execution times of

17

the proposed algorithm for the SD-HVR and LD-HVR classes are much higher than the execution

times obtained for the other two classes of benchmarks (i.e., SD-LVR and LD-LVR). This indicates

that the execution time of the proposed parallel randomized approximation algorithm is highly

correlated with the variance of the release dates. This trend is observed for all three different

values of ε considered here. The difference between the execution time in classes with high variance

release dates and low variance release dates is more significant for small values of ε. On the other

hand, no significant difference is observed in the performance of the proposed algorithm between

SD-HVR and LD-HVR classes, and also between SD-LVR and LD-LVR classes. This indicates

that the execution time of the proposed algorithm is not very sensitive to the relative distribution

of the processing and delivery times.

In summary, the experimental analysis shows that our proposed algorithm can solve very large-

scale single machine scheduling problems within few seconds which makes it suitable for a wide

range of real world applications where the scheduler must obtain a quality solution in real time.

Task scheduling in parallel computing (Blumofe & Park 1994), scheduling of large-scale data broad-

casting (Aksoy & Franklin 1998, Pozo et al. 2019), and task scheduling in big data and High Perfor-

mance Computing (HPC) (Reuther et al. 2018, Rjoub et al. 2020, Fu et al. 2019) are few examples

of the areas where our proposed algorithm can be employed efficiently. It is also important to note

that the proposed algorithm is an approximation scheme that provides users with the flexibility of

balancing between the running time of the algorithm and the quality of solutions.

5. Conclusion

We designed a parallel randomized approximation algorithm for solving the non-preemptive sin-

gle machine scheduling problem with release dates and delivery times, 1|rj , qj |Cmax. We performed

an extensive experimental analysis to evaluate the performance of the proposed algorithm. The

experimental results show that the solutions obtained by the proposed parallel approximation al-

gorithm are within a small gap of those obtained by the Extended Jackson’s Rule (EJR) algorithm.

They also show that the proposed algorithm obtains very good speedup with respect to its own se-

quential version, as well as with respect to EJR, which has the time complexity of (i.e., O(n log n)).

The 1|rj , qj |Cmax problem is widely used as a sub-problem in several algorithms for shop scheduling

problems, therefore, as a future research, we plan to employ the proposed approximation algorithm

18

in solving the sub-problems of various shop scheduling problems. We also plan to design parallel

approximation algorithms for other NP-hard combinatorial optimization problems.

References

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling.

Management Science, 34 , 391–401.

Aksoy, D., & Franklin, M. (1998). Scheduling for large-scale on-demand data broadcasting. In Proceedings.

IEEE INFOCOM’98, the Conference on Computer Communications. Seventeenth Annual Joint Con-

ference of the IEEE Computer and Communications Societies. Gateway to the 21st Century (Cat. No.

98 (pp. 651–659). IEEE volume 2.

Allahverdi, A., Ng, C., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup

times or costs. European Journal of Operational Research, 187 , 985–1032.

Augusto, V., Xie, X., & Perdomo, V. (2010). Operating theatre scheduling with patient recovery in both

operating rooms and recovery beds. Computers & Industrial Engineering , 58 , 231–238.

Baker, K. R., & Su, Z.-S. (1974). Sequencing with due-dates and early start times to minimize maximum

tardiness. Naval Research Logistics Quarterly , 21 , 171–176.

Balas, E., Lenstra, J. K., & Vazacopoulos, A. (1995). The one-machine problem with delayed precedence

constraints and its use in job shop scheduling. Management Science, 41 , 94–109.

Bittencourt, L. F., Diaz-Montes, J., Buyya, R., Rana, O. F., & Parashar, M. (2017). Mobility-aware

application scheduling in fog computing. IEEE Cloud Computing , 4 , 26–35.

Blelloch, G. E., Peng, R., & Tangwongsan, K. (2011). Linear-work greedy parallel approximate set cover and

variants. In Proc. of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures

(pp. 23–32).

Blelloch, G. E., & Tangwongsan, K. (2010). Parallel approximation algorithms for facility-location problems.

In Proc. of the 22nd Annual ACM Symposium on Parallelism in Algorithms and Architectures (pp. 315–

324).

Blumofe, R. D., & Park, D. S. (1994). Scheduling large-scale parallel computations on networks of worksta-

tions. In Proceedings of 3rd IEEE International Symposium on High Performance Distributed Com-

puting (pp. 96–105). IEEE.

Cardoen, B., Demeulemeester, E., & Beliën, J. (2010). Operating room planning and scheduling: A literature

review. European Journal of Operational Research, 201 , 921–932.

Carlier, J. (1982). The one-machine sequencing problem. European Journal of Operational Research, 11 ,

42–47.

19

Carlier, J., & Pinson, É. (1989). An algorithm for solving the job-shop problem. Management Science, 35 ,

164–176.

Chen, B., Potts, C. N., & Woeginger, G. J. (1998). A review of machine scheduling: Complexity, algorithms

and approximability. In Handbook of combinatorial optimization (pp. 1493–1641). Springer.

Dulebenets, M. A. (2019). A delayed start parallel evolutionary algorithm for just-in-time truck scheduling

at a cross-docking facility. International Journal of Production Economics, 212 , 236–258.

Fazlirad, A., & Brennan, R. W. (2018). Multiagent manufacturing scheduling: An updated state of the art

review. In 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)

(pp. 722–729). IEEE.

Feng, Z.-K., Niu, W.-J., Zhou, J.-Z., Cheng, C.-T., Qin, H., & Jiang, Z.-Q. (2017). Parallel multi-objective

genetic algorithm for short-term economic environmental hydrothermal scheduling. Energies, 10 , 163.

Fu, W., Liu, S., & Srivastava, G. (2019). Optimization of big data scheduling in social networks. Entropy ,

21 , 902.

Funabiki, N., & Takefuji, Y. (1993). A parallel algorithm for broadcast scheduling problems in packet radio

networks. IEEE Transactions on Communications, 41 , 828–831.

Gahm, C., Kanet, J. J., & Tuma, A. (2019). On the flexibility of a decision theory-based heuristic for single

machine scheduling. Computers & Operations Research, 101 , 103 – 115.

Garey, M. R., & Johnson, D. S. (1978). “Strong” NP-Completeness Results: Motivation, Examples, and

Implications. Journal of the ACM (JACM), 25 , 499–508.

Ghalami, L., & Grosu, D. (2017). A parallel approximation algorithm for scheduling parallel identical

machines. In Proc. of the 7th IEEE Workshop on Parallel / Distributed Computing and Optimization

(PDCO 2017) (pp. 442–451).

Ghalami, L., & Grosu, D. (2019). Scheduling parallel identical machines to minimize makespan: A parallel

approximation algorithm. Journal of Parallel and Distributed Computing , 133 , 221–231.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in

deterministic sequencing and scheduling: a survey. In Annals of discrete mathematics (pp. 287–326).

Elsevier volume 5.

Gupta, D., & Denton, B. (2008). Appointment scheduling in health care: Challenges and opportunities. IIE

Transactions, 40 , 800–819.

Hall, L. A., & Shmoys, D. B. (1992). Jackson’s rule for single-machine scheduling: Making a good heuristic

better. Mathematics of Operations Research, 17 , 22–35.

Hall, R. W. et al. (2012). Handbook of healthcare system scheduling . Springer.

20

Johnson, D. S. (2002). A theoretician’s guide to the experimental analysis of algorithms. Data structures,

near neighbor searches, and methodology: fifth and sixth DIMACS implementation challenges, 59 ,

215–250.

Kalashnikov, A., & Kostenko, V. (2008). A parallel algorithm of simulated annealing for multiprocessor

scheduling. Journal of Computer and Systems Sciences International , 47 , 455–463.

Kise, H., Ibaraki, T., & Mine, H. (1979). Performance analysis of six approximation algorithms for the one-

machine maximum lateness scheduling problem with ready times. Journal of the Operations Research

Society of Japan, 22 , 205–224.

Kurz, M., & Askin, R. (2001). Heuristic scheduling of parallel machines with sequence-dependent set-up

times. International Journal of Production Research, 39 , 3747–3769.

Laalaoui, Y., & M’Hallah, R. (2016). A binary multiple knapsack model for single machine scheduling with

machine unavailability. Computers & Operations Research, 72 , 71 – 82.

Lageweg, B., Lenstra, J. K., & Kan, A. (1976). Minimizing maximum lateness on one machine: Computa-

tional experience and some applications. Statistica Neerlandica, 30 , 25–41.

Lawler, E. L., Lenstra, J. K., Kan, A. H. R., & Shmoys, D. B. (1993). Sequencing and scheduling: Algorithms

and complexity. Handbooks in operations research and management science, 4 , 445–522.

Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling problems. Annals of

Discrete Mathematics, 1 , 343–362.

Li, Y., Ghalami, L., Schwiebert, L., & Grosu, D. (2018). A gpu parallel approximation algorithm for

scheduling parallel identical machines to minimize makespan. In 2018 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW) (pp. 619–628). IEEE.

Marynissen, J., & Demeulemeester, E. (2019). Literature review on multi-appointment scheduling problems

in hospitals. European Journal of Operational Research, 272 , 407–419.

Mashayekhy, L., Nejad, M. M., Grosu, D., Zhang, Q., & Shi, W. (2015). Energy-aware scheduling of

mapreduce jobs for big data applications. IEEE Transactions on Parallel and Distributed Systems, 26 ,

2720–2733.

McGeoch, C. (1992). Analyzing algorithms by simulation: variance reduction techniques and simulation

speedups. ACM Computing Surveys (CSUR), 24 , 195–212.

McMahon, G., & Florian, M. (1975). On scheduling with ready times and due dates to minimize maximum

lateness. Operations Research, 23 , 475–482.

Mnich, M., & van Bevern, R. (2018). Parameterized complexity of machine scheduling: 15 open problems.

Computers & Operations Research, 100 , 254–261.

21

Nguyen, S., Mei, Y., & Zhang, M. (2017). Genetic programming for production scheduling: a survey with a

unified framework. Complex & Intelligent Systems, 3 , 41–66.

Niu, S., Song, S., Ding, J.-Y., Zhang, Y., & Chiong, R. (2019). Distributionally robust single machine

scheduling with the total tardiness criterion. Computers & Operations Research, 101 , 13 – 28.

Nowicki, E., & Smutnicki, C. (1994). An approximation algorithm for a single-machine scheduling problem

with release times and delivery times. Discrete Applied Mathematics, 48 , 69–79.

Potts, C. N. (1980). Analysis of a heuristic for one machine sequencing with release dates and delivery times.

Operations Research, 28 , 1436–1441.

Pozo, F., Rodriguez-Navas, G., & Hansson, H. (2019). Methods for large-scale time-triggered network

scheduling. Electronics, 8 , 738.

Rajagopalan, S., & Vazirani, V. V. (1998). Primal-dual RNC approximation algorithms for set cover and

covering integer programs. SIAM J. Comput., 28 , 525–540.

Reuther, A., Byun, C., Arcand, W., Bestor, D., Bergeron, B., Hubbell, M., Jones, M., Michaleas, P., Prout,

A., Rosa, A. et al. (2018). Scalable system scheduling for hpc and big data. Journal of Parallel and

Distributed Computing , 111 , 76–92.

Rjoub, G., Bentahar, J., & Wahab, O. A. (2020). Bigtrustscheduling: Trust-aware big data task scheduling

approach in cloud computing environments. Future Generation Computer Systems, 110 , 1079–1097.

Schoenfelder, J., Bretthauer, K. M., Wright, P. D., & Coe, E. (2020). Nurse scheduling with quick-response

methods: Improving hospital performance, nurse workload, and patient experience. European Journal

of Operational Research, 283 , 390–403.

Schrage, L. (1971). Obtaining optimal solutions to resource constrained network scheduling problems. Un-

published manuscript , 189 .

Shen, J., & Zhu, Y. (2020). A single machine scheduling with periodic maintenance and uncertain processing

time. International Journal of Computational Intelligence Systems, 13 , 193–200.

Taillard, E. D. (1994). Parallel taboo search techniques for the job shop scheduling problem. ORSA journal

on Computing , 6 , 108–117.

Talebi, J., Badri, H., Ghaderi, F., & Khosravian, E. (2009). An efficient scatter search algorithm for

minimizing earliness and tardiness penalties in a single-machine scheduling problem with a common

due date. In 2009 IEEE Congress on Evolutionary Computation (pp. 1012–1018).

Tsai, C.-W., Huang, W.-C., Chiang, M.-H., Chiang, M.-C., & Yang, C.-S. (2014). A hyper-heuristic schedul-

ing algorithm for cloud. IEEE Transactions on Cloud Computing , 2 , 236–250.

Vazirani, V. V. (2013). Approximation algorithms. Springer Science & Business Media.

22

Weng, C., & Lu, X. (2005). Heuristic scheduling for bag-of-tasks applications in combination with qos in

the computational grid. Future Generation Computer Systems, 21 , 271–280.

Williamson, D. P., & Shmoys, D. B. (2011). The Design of Approximation Algorithms. Cambridge University

Press.

Zhao, Z., Liu, S., Zhou, M., Guo, X., & Qi, L. (2020). Decomposition method for new single-machine

scheduling problems from steel production systems. IEEE Transactions on Automation Science and

Engineering , 17 , 1376–1387.

23

View publication stats

https://www.researchgate.net/publication/349080717

	Introduction
	Related work
	A parallel randomized approximation algorithm for 1|rj, qj|Cmax
	Experimental analysis
	Experimental setup
	 Experimental results

	Conclusion

